二叉树的四种遍历方式(递归和非递归双重实现)

写在前面:博主是一位普普通通的19届二本大学生,平时最大的爱好就是听听歌,逛逛B站。博主很喜欢的一句话花开堪折直须折,莫待无花空折枝:博主的理解是头一次为人,就应该做自己想做的事,做自己不后悔的事,做自己以后不会留有遗憾的事,做自己觉得有意义的事,不浪费这大好的青春年华。博主写博客目的是记录所学到的知识并方便自己复习,在记录知识的同时获得部分浏览量,得到更多人的认可,满足小小的成就感,同时在写博客的途中结交更多志同道合的朋友,让自己在技术的路上并不孤单。

目录:
1.二叉树的先序遍历
       
先序遍历思想
       
先序遍历递归实现
       
先序遍历非递归实现
2.二叉树的中序遍历
       
中序遍历思想
       
中序递归实现
       
中序非递归实现
3.二叉树的后序遍历
       
后序遍历思想
       
中序递归实现
       
中序非递归实现
4.二叉树的层序遍历
       
代码实现

博客中的二叉树存储方式如下

typedef struct BiTNode{
    TElemType data;//数据域
    struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;

1.二叉树的先序遍历

1.1二叉树先序遍历的实现思想是:

  1. 访问根节点;
  2. 访问当前节点的左子树;
  3. 若当前节点无左子树,则访问当前节点的右子树;

在这里插入图片描述

上图先序遍历结果为:1 2 4 5 3 6 7

1.2先序遍历递归实现

void PreOrderTraverse(BiTree T){
    if (T) {
        printf("%d ",T->data);
        PreOrderTraverse(T->lchild);//访问该结点的左孩子
        PreOrderTraverse(T->rchild);//访问该结点的右孩子
    }
    //如果结点为空,返回上一层
    return;
}

1.3先序遍历非递归实现

而递归的底层实现依靠的是栈存储结构,因此,二叉树的先序遍历既可以直接采用递归思想实现,也可以使用栈的存储结构模拟递归的思想实现

//先序遍历非递归算法
int top=-1;//top变量时刻表示栈顶元素所在位置
//前序遍历使用的进栈函数
void push(BiTNode** a,BiTNode* elem){
    a[++top]=elem;
}
//弹栈函数
void pop( ){
    if (top==-1) {
        return ;
    }
    top--;
}
//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode* elem){
    printf("%d ",elem->data);
}
//拿到栈顶元素
BiTNode* getTop(BiTNode**a){
    return a[top];
}
void PreOrderTraverse(BiTree Tree){
    BiTNode* a[20];//定义一个顺序栈
    BiTNode * p;//临时指针
    push(a, Tree);//根结点进栈
    while (top!=-1) {
        p=getTop(a);//取栈顶元素
        pop();//弹栈
        while (p) {
            displayElem(p);//调用结点的操作函数
            //如果该结点有右孩子,右孩子进栈
            if (p->rchild) {
                push(a,p->rchild);
            }
            p=p->lchild;//一直指向根结点最后一个左孩子
        }
    }
}

2.二叉树的中序遍历

2.1二叉树中序遍历思想

  1. 访问当前节点的左子树;
  2. 访问根节点;
  3. 访问当前节点的右子树

在这里插入图片描述

上图中遍历结果:4 2 5 1 6 3 7

2.2中序遍历递归实现


//中序遍历
void INOrderTraverse(BiTree T){
    if (T) {
        INOrderTraverse(T->lchild);//遍历左孩子
        printf("%d ",T->data);
        INOrderTraverse(T->rchild);//遍历右孩子
    }
    //如果结点为空,返回上一层
    return;
}

2.3中序遍历非递归实现

而递归的底层实现依靠的是栈存储结构,因此,二叉树的先序遍历既可以直接采用递归思想实现,也可以使用栈的存储结构模拟递归的思想实现。
中序遍历的 非递归方式实现思想 是:从根结点开始,遍历左孩子同时压栈,当遍历结束,说明当前遍历的结点没有左孩子,从栈中取出来调用操作函数,然后访问该结点的右孩子,继续以上重复性的操作。除此之外, 还有另一种实现思想:中序遍历过程中,只需将每个结点的左子树压栈即可,右子树不需要压栈。当结点的左子树遍历完成后,只需要以栈顶结点的右孩子为根结点,继续循环遍历即可。

第一种非递归思路

int top=-1;//top变量时刻表示栈顶元素所在位置
//前序和中序遍历使用的进栈函数
void push(BiTNode** a,BiTNode* elem){
    a[++top]=elem;
}
//弹栈函数
void pop( ){
    if (top==-1) {
        return ;
    }
    top--;
}
//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode* elem){
    printf("%d ",elem->data);
}
//拿到栈顶元素
BiTNode* getTop(BiTNode**a){
    return a[top];
}
//中序遍历非递归算法
void InOrderTraverse1(BiTree Tree){
    BiTNode* a[20];//定义一个顺序栈
    BiTNode * p;//临时指针
    push(a, Tree);//根结点进栈
    while (top!=-1) {//top!=-1说明栈内不为空,程序继续运行
        while ((p=getTop(a)) &&p){//取栈顶元素,且不能为NULL
            push(a, p->lchild);//将该结点的左孩子进栈,如果没有左孩子,NULL进栈
        }
        pop();//跳出循环,栈顶元素肯定为NULL,将NULL弹栈
        if (top!=-1) {
            p=getTop(a);//取栈顶元素
            pop();//栈顶元素弹栈
            displayElem(p);
            push(a, p->rchild);//将p指向的结点的右孩子进栈
        }
    }
}

第二种非递归思路:

//中序遍历实现的另一种方法
void InOrderTraverse2(BiTree Tree){
    BiTNode* a[20];//定义一个顺序栈
    BiTNode * p;//临时指针
    p=Tree;
    //当p为NULL或者栈为空时,表明树遍历完成
    while (p || top!=-1) {
        //如果p不为NULL,将其压栈并遍历其左子树
        if (p) {
            push(a, p);
            p=p->lchild;
        }
        //如果p==NULL,表明左子树遍历完成,需要遍历上一层结点的右子树
        else{
            p=getTop(a);
            pop();
            displayElem(p);
            p=p->rchild;
        }
    }
}

3.二叉树的后序遍历

3.1后序遍历思想

从根节点出发,依次遍历各节点的左右子树,直到当前节点左右子树遍历完成后,才访问该节点元素。

在这里插入图片描述

上图后序遍历的结果为:4 5 2 6 7 3 1

3.2后序遍历的递归实现

void PostOrderTraverse(BiTree T){
    if (T) {
        PostOrderTraverse(T->lchild);//遍历左孩子
        PostOrderTraverse(T->rchild);//遍历右孩子
        printf("%d ",T->data);
    }
    //如果结点为空,返回上一层
    return;
}

3.2后序遍历的非递归实现

后序遍历是在遍历完当前结点的左右孩子之后,才调用操作函数,所以需要在操作结点进栈时,为每个结点配备一个标志位。当遍历该结点的左孩子时,设置当前结点的标志位为 0,进栈;当要遍历该结点的右孩子时,设置当前结点的标志位为 1,进栈。
这样,当遍历完成,该结点弹栈时,查看该结点的标志位的值:如果是 0,表示该结点的右孩子还没有遍历;反之如果是 1,说明该结点的左右孩子都遍历完成,可以调用操作函数。

int top=-1;//top变量时刻表示栈顶元素所在位置
//弹栈函数
void pop( ){
    if (top==-1) {
        return ;
    }
    top--;
}
//模拟操作结点元素的函数,输出结点本身的数值
void displayElem(BiTNode* elem){
    printf("%d ",elem->data);
}
//后序遍历非递归算法
typedef struct SNode{
    BiTree p;
    int tag;
}SNode;
//后序遍历使用的进栈函数
void postpush(SNode *a,SNode sdata){
    a[++top]=sdata;
}
//后序遍历函数
void PostOrderTraverse(BiTree Tree){
    SNode a[20];//定义一个顺序栈
    BiTNode * p;//临时指针
    int tag;
    SNode sdata;
    p=Tree;
    while (p||top!=-1) {
        while (p) {
            //为该结点入栈做准备
            sdata.p=p;
            sdata.tag=0;//由于遍历是左孩子,设置标志位为0
            postpush(a, sdata);//压栈
            p=p->lchild;//以该结点为根结点,遍历左孩子
        }
        sdata=a[top];//取栈顶元素
        pop();//栈顶元素弹栈
        p=sdata.p;
        tag=sdata.tag;
        //如果tag==0,说明该结点还没有遍历它的右孩子
        if (tag==0) {
            sdata.p=p;
            sdata.tag=1;
            postpush(a, sdata);//更改该结点的标志位,重新压栈
            p=p->rchild;//以该结点的右孩子为根结点,重复循环
        }
        //如果取出来的栈顶元素的tag==1,说明此结点左右子树都遍历完了,可以调用操作函数了
        else{
            displayElem(p);
            p=NULL;
        }
    }
}

4.二叉树的层序遍历

照二叉树中的层次从左到右依次遍历每层中的结点。具体的实现思路是:通过使用队列的数据结构,从树的根结点开始,依次将其左孩子和右孩子入队。而后每次队列中一个结点出队,都将其左孩子和右孩子入队,直到树中所有结点都出队,出队结点的先后顺序就是层次遍历的最终结果。

在这里插入图片描述

上图层序遍历结果:1 2 3 4 5 6 7

#include <stdio.h>
#define TElemType int
//初始化队头和队尾指针开始时都为0
int front=0,rear=0;
typedef struct BiTNode{
    TElemType data;//数据域
    struct BiTNode *lchild,*rchild;//左右孩子指针
}BiTNode,*BiTree;
void CreateBiTree(BiTree *T){
    *T=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->data=1;
    (*T)->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild=(BiTNode*)malloc(sizeof(BiTNode));
   
    (*T)->lchild->data=2;
    (*T)->lchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->lchild->rchild->data=5;
    (*T)->lchild->rchild->lchild=NULL;
    (*T)->lchild->rchild->rchild=NULL;
   
    (*T)->rchild->data=3;
    (*T)->rchild->lchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild->lchild->data=6;
    (*T)->rchild->lchild->lchild=NULL;
    (*T)->rchild->lchild->rchild=NULL;
   
    (*T)->rchild->rchild=(BiTNode*)malloc(sizeof(BiTNode));
    (*T)->rchild->rchild->data=7;
    (*T)->rchild->rchild->lchild=NULL;
    (*T)->rchild->rchild->rchild=NULL;
   
    (*T)->lchild->lchild->data=4;
    (*T)->lchild->lchild->lchild=NULL;
    (*T)->lchild->lchild->rchild=NULL;
}
//入队函数
void EnQueue(BiTree *a,BiTree node){
    a[rear++]=node;
}
//出队函数
BiTNode* DeQueue(BiTNode** a){
    return a[front++];
}
//输出函数
void displayNode(BiTree node){
    printf("%d ",node->data);
}
int main() {
    BiTree tree;
    //初始化二叉树
    CreateBiTree(&tree);
    BiTNode * p;
    //采用顺序队列,初始化创建队列数组
    BiTree a[20];
    //根结点入队
    EnQueue(a, tree);
    //当队头和队尾相等时,表示队列为空
    while(front<rear) {
        //队头结点出队
        p=DeQueue(a);
        displayNode(p);
        //将队头结点的左右孩子依次入队
        if (p->lchild!=NULL) {
            EnQueue(a, p->lchild);
        }
        if (p->rchild!=NULL) {
            EnQueue(a, p->rchild);
        }
    }
    return 0;
}

猜你喜欢

转载自blog.csdn.net/qq_45737068/article/details/107748958