hadoop之二mapreduce

mapReduce
2.1.MapReduce定义
apReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。
MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。
2.2.MapReduce优缺点
2.2.1.优点
MapReduce 易于编程
它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。
良好的扩展性
当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。
高容错性
MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。
适合PB级以上海量数据的离线处理
可以实现上千台服务器集群并发工作,提供数据处理能力。
2.2.2.缺点
不擅长实时计算
MapReduce无法像MySQL一样,在毫秒或者秒级内返回结果。
不擅长流式计算
流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。
不擅长DAG(有向图)计算
多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。
2.3.MapReduce核心思想
分布式的运算程序往往需要分成至少2个阶段。
第一个阶段的MapTask并发实例,完全并行运行,互不相干。
第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。
MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。
总结:分析WordCount数据流走向深入理解MapReduce核心思想。
2.4.MapReduce进程
MrAppMaster:负责整个程序的过程调度及状态协调。
MapTask:负责Map阶段的整个数据处理流程。
ReduceTask:负责Reduce阶段的整个数据处理流程。
2.6.1.什么是序列化
序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。
2.6.2.为什么要序列化
一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。
2.6.3.为什么不用Java的序列化
Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。
2.6.4.Hadoop序列化特点:
紧凑 :高效使用存储空间。
快速:读写数据的额外开销小。
可扩展:随着通信协议的升级而可升级
互操作:支持多语言的交互
2.7.FileInputFormat切片机制
2.7.1.切片机制
简单地按照文件的内容长度进行切片
切片大小,默认等于Block大小
切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
2.8. CombineTextInputFormat切片机制
框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其低下。
2.8.1.应用场景:
CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。
2.8.2.虚拟存储切片最大值设置
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。
2.8.3.切片机制
生成切片过程包括:虚拟存储过程和切片过程二部分。
2.9.MapTask工作机制
Read阶段:MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。
Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。
Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
Combine阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。
在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。
2.10.溢写阶段详情
步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。
步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。
2.11.ReduceTask工作机制
Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。
Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
Reduce阶段:reduce()函数将计算结果写到HDFS上。
2.12.Join多种应用
2.12.1.Reduce Join工作原理
Map端的主要工作:为来自不同表或文件的key/value对,打标签以区别不同来源的记录。然后用连接字段作为key,其余部分和新加的标志作为value,最后进行输出。
Reduce端的主要工作:在Reduce端以连接字段作为key的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录(在Map阶段已经打标志)分开,最后进行合并就ok了。
2.14.MapReduce 跑的慢的原因
2.14.1.MapReduce 程序效率的瓶颈在于两点
计算机性能
CPU、内存、磁盘健康、网络
I/O 操作优化
数据倾斜
Map和Reduce数设置不合理
Map运行时间太长,导致Reduce等待过久
小文件过多
大量的不可分块的超大文件
Spill次数过多
Merge次数过多等。
2.15.MapReduce优化方法
MapReduce优化方法主要从六个方面考虑:
数据输入、
Map阶段、
Reduce阶段、
IO传输、
数据倾斜问题和常用的调优参数
2.15.1.数据输入
合并小文件:在执行MR任务前将小文件进行合并,大量的小文件会产生大量的Map任务,增大Map任务装载次数,而任务的装载比较耗时,从而导致MR运行较慢。
采用CombineTextInputFormat来作为输入,解决输入端大量小文件场景。
2.15.2.Map阶段
减少溢写(Spill)次数:通过调整io.sort.mb及sort.spill.percent参数值,增大触发Spill的内存上限,减少Spill次数,从而减少磁盘IO。
减少合并(Merge)次数:通过调整io.sort.factor参数,增大Merge的文件数目,减少Merge的次数,从而缩短MR处理时间。
在Map之后,不影响业务逻辑前提下,先进行Combine处理,减少 I/O。
2.15.3.Reduce阶段
合理设置Map和Reduce数:两个都不能设置太少,也不能设置太多。太少,会导致Task等待,延长处理时间;太多,会导致Map、Reduce任务间竞争资源,造成处理超时等错误。
设置Map、Reduce共存:调整slowstart.completedmaps参数,使Map运行到一定程度后,Reduce也开始运行,减少Reduce的等待时间。
规避使用Reduce:因为Reduce在用于连接数据集的时候将会产生大量的网络消耗。
合理设置Reduce端的Buffer:默认情况下,数据达到一个阈值的时候,Buffer中的数据就会写入磁盘,然后Reduce会从磁盘中获得所有的数据。也就是说,Buffer和Reduce是没有直接关联的,中间多次写磁盘->读磁盘的过程,既然有这个弊端,那么就可以通过参数来配置,使得Buffer中的一部分数据可以直接输送到Reduce,从而减少IO开销:mapreduce.reduce.input.buffer.percent,默认为0.0。当值大于0的时候,会保留指定比例的内存读Buffer中的数据直接拿给Reduce使用。这样一来,设置Buffer需要内存,读取数据需要内存,Reduce计算也要内存,所以要根据作业的运行情况进行调整。
2.15.4.I/O传输
采用数据压缩的方式,减少网络IO的的时间。安装Snappy和LZO压缩编码器。
使用SequenceFile二进制文件。
2.15.5.数据倾斜问题
2.15.5.1.数据倾斜现象
数据频率倾斜——某一个区域的数据量要远远大于其他区域。
数据大小倾斜——部分记录的大小远远大于平均值。
2.15.5.2.减少数据倾斜的方法
2.15.5.2.1.方法一:抽样和范围分区
可以通过对原始数据进行抽样得到的结果集来预设分区边界值。
2.15.5.2.2.方法二:自定义分区
基于输出键的背景知识进行自定义分区。例如,如果Map输出键的单词来源于一本书。且其中某几个专业词汇较多。那么就可以自定义分区将这这些专业词汇发送给固定的一部分Reduce实例。而将其他的都发送给剩余的Reduce实例。
2.15.5.2.3.方法三:Combine
使用Combine可以大量地减小数据倾斜。在可能的情况下,Combine的目的就是聚合并精简数据。
方法四:采用Map Join,尽量避免Reduce Join
2.16.小文存在的弊端(坏处)? 如何解决?
2.16.1.弊端
HDFS上每个文件都要在NameNode上建立一个索引,这个索引的大小约为150byte,这样当小文件比较多的时候,就会产生很多的索引文件,一方面会大量占用NameNode的内存空间,另一方面就是索引文件过大使得索引速度变慢。
2.16.2.解决方案一
在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS。
在业务处理之前,在HDFS上使用MapReduce程序对小文件进行合并。
在MapReduce处理时,可采用CombineTextInputFormat提高效率。
2.16.3.解决方案二
2.16.3.1.Hadoop Archive
是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样就减少了NameNode的内存使用。
2.16.3.2.Sequence File
Sequence File由一系列的二进制key/value组成,如果key为文件名,value为文件内容,则可以将大批小文件合并成一个大文件。
2.16.3.3.CombineFileInputFormat
CombineFileInputFormat是一种新的InputFormat,用于将多个文件合并成一个单独的Split,另外,它会考虑数据的存储位置。
2.16.4.解决方案三
2.16.4.1.开启JVM重用
对于大量小文件Job,可以开启JVM重用会减少45%运行时间。
JVM重用原理:一个Map运行在一个JVM上,开启重用的话,该Map在JVM上运行完毕后,JVM继续运行其他Map。
具体设置:mapreduce.job.jvm.numtasks值在10-20之间。

猜你喜欢

转载自www.cnblogs.com/sqzboke123/p/13381616.html