Java 多线程与高并发

1:volatile
  • 保证线程可见性
    当多个线程访问同一个共享资源时,线程会拷贝资源的副本到自己的工作内存。这样如果某个线程对这个资源进行写操作,其他线程不会马上知道。当对这个资源加volatile关键字,其他线程就会随时监听,更新新的值。
    如下例子,不加volatile关键字,线程不会停止,加volatile关键字后会及时重新更新副本stop的值,线程停止。
package com.nobody.thread;
/**
*    不加volatile,输出:
*    main start...
*    thread start...
*    change stop=true
*    
*   加volatile,输出:
*    main start...
*    thread start...
*    thread stop...
*    change stop=true
* @author Μr.ηobοdy
*
* @date 2020-04-19
*
*/
public class VolatileDemo {

   private /* volatile */ static boolean stop = false;

   public static void main(String[] args) {
       
       Thread t = new Thread(() -> {
           System.out.println("thread start...");
           while (!stop) {
               
           }
           System.out.println("thread stop...");
       });
       
       System.out.println("main start...");
       
       t.start();
       
       try {
           Thread.sleep(1000);
       } catch (InterruptedException e) {
           e.printStackTrace();
       }
       
       stop = true;
       System.out.println("change stop=" + stop);
   }

}

在这里插入图片描述

  • 禁止指令重排序
    JIT(即时编译器just-in-time compiler) 是一种提高程序运行效率的方法,会将指令重排序。例如实例化一个对象,一般可分为3步骤,第一分配内存空间,第二初始化变量等,第三将引用地址赋值给引用对象。指令重排序可将顺序改为132。这样引用对象可能就拿到一个未初始化的对象,导致出错。
package com.nobody.thread;

/**
 *  单例模式(懒汉式) 
 *  懒汉式必须加volatile
 * 
 * @author Μr.ηobοdy
 *
 * @date 2020-04-19
 *
 */
public class Singleton {

    private /* vovalite */ static Singleton INSTANCE;

    private String name;

    private Singleton(String name) {
        this.name = name;
    }

    public static Singleton getInstance() {
        if (null == INSTANCE) {
            synchronized (Singleton.class) {
                if (null == INSTANCE) {
                    // 可能会出现指令重排序,即未进行成员变量name的初始化就退出了,
                    // 这样别人就会拿到未初始化(name=null)的Singleton对象
                    INSTANCE = new Singleton("hh");
                }
            }
        }
        return INSTANCE;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

}

  • 不保证原子性
package com.nobody.thread;

import java.util.ArrayList;
import java.util.List;

/**
 * volatile不保证原子性,最终结果一般小于10000
 * 
 * 若要保证原子性,直接将doCount方法加synchronized关键字即可,而volatile可有可无
 * 
 * @author Μr.ηobοdy
 *
 * @date 2020-04-19
 *
 */
public class VolatileDemo1 {

    private volatile static int count = 0;

    private /*synchronized*/ void doCount() {
        for (int i = 0; i < 1000; i++) {
            count++;
        }
    }

    public static void main(String[] args) {

        VolatileDemo1 v = new VolatileDemo1();

        // 启动10个线程
        List<Thread> threads = new ArrayList<>();
        for (int i = 1; i <= 10; i++) {
            threads.add(new Thread(v::doCount, "thread-" + i));
        }
        threads.forEach(t -> t.start());

        // 等待10个线程执行完
        threads.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        System.out.println("count=" + count);
    }

}

2:CAS(Compare And Set 无锁优化 自旋锁)

设置新值之前会先将旧的值与期望值比较,如果相等才set,不然就重试或者失败。这是有CPU原语支持的。

package com.nobody.thread;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * CAS AtomicInteger保证原子性,最终结果一定等于10000
 * 
 * 
 * @author Μr.ηobοdy
 *
 * @date 2020-04-19
 *
 */
public class AtomicIntegerDemo {

    private static AtomicInteger count = new AtomicInteger(0);

    private void doCount() {
        for (int i = 0; i < 1000; i++) {
            count.incrementAndGet();
        }
    }

    public static void main(String[] args) {

        AtomicIntegerDemo v = new AtomicIntegerDemo();

        // 启动10个线程
        List<Thread> threads = new ArrayList<>();
        for (int i = 1; i <= 10; i++) {
            threads.add(new Thread(v::doCount, "thread-" + i));
        }
        threads.forEach(t -> t.start());

        // 等待10个线程执行完
        threads.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });

        System.out.println("count=" + count);
    }

}

不过这种会出现ABA问题,即由值A先变成值B,然后又变回A值,最后旧值与期望值比较还是相等。可用版本号解决这个问题。

3:LongAdder

采用分段锁思想,假如有1000个线程对同一个共享变量进行操作(例如自增),此处假设分为4小组,250个线程为1组,组内进行自增操作,这样分组能减少锁的概率,最后将每个小组进行求总和处理。其实分段锁组内还是CAS原理。一般在线程数高时,效率比synchronized和AtomicLong高。

package com.nobody.thread;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic.LongAdder;

/**
 * LongAdder,AtomicLong,synchronized多线程时效率比较
 * 模拟1000个线程对一个等于0的值进行自增操作,每个线程自增10000
 * 
 * 输出结果:
 * longAdderCount:10000000, time:227
 * atomicLongCount:10000000, time:395
 * synchronizedCount:10000000, time:909
 * 
 * @author Μr.ηobοdy
 *
 * @date 2020-04-20
 *
 */
public class LongAdderDemo {

    private static LongAdder longAdderCount = new LongAdder();
    private static AtomicLong atomicLongCount = new AtomicLong(0L);
    private static long synchronizedCount = 0L;

    public static void main(String[] args) {

        // LongAdder测试
        List<Thread> longAdderThreads = new ArrayList<>(1000);
        for (int i = 1; i <= 1000; i++) {
            longAdderThreads.add(new Thread(() -> {
                for (int j = 0; j < 10000; j++) {
                    longAdderCount.increment();
                }
            }));
        }
        long start = System.currentTimeMillis();
        longAdderThreads.forEach(t -> t.start());
        // 等待1000个线程执行完
        longAdderThreads.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end = System.currentTimeMillis();

        // AtomicLong测试
        List<Thread> atomicLongThreads = new ArrayList<>(1000);
        for (int i = 1; i <= 1000; i++) {
            atomicLongThreads.add(new Thread(() -> {
                for (int j = 0; j < 10000; j++) {
                    atomicLongCount.incrementAndGet();
                }
            }));
        }
        long start1 = System.currentTimeMillis();
        atomicLongThreads.forEach(t -> t.start());
        // 等待1000个线程执行完
        atomicLongThreads.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end1 = System.currentTimeMillis();
        
        
     // AtomicLong测试
        List<Thread> synchronizedThreads = new ArrayList<>(1000);
        Object o = new Object();
        for (int i = 1; i <= 1000; i++) {
            synchronizedThreads.add(new Thread(() -> {
                for (int j = 0; j < 10000; j++) {
                    synchronized (o) {
                        synchronizedCount++;
                    }
                }
            }));
        }
        long start2 = System.currentTimeMillis();
        synchronizedThreads.forEach(t -> t.start());
        // 等待1000个线程执行完
        synchronizedThreads.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end2 = System.currentTimeMillis();

        System.out.println("longAdderCount:" + longAdderCount + ", time:" + (end - start));
        System.out.println("atomicLongCount:" + atomicLongCount + ", time:" + (end1 - start1));
        System.out.println("synchronizedCount:" + synchronizedCount + ", time:" + (end2 - start2));
    }

}

猜你喜欢

转载自blog.csdn.net/chenlixiao007/article/details/105623606