kafka 关于“快”的原因,自己的一些理解

  1. 顺序读写是关键,现代操作系统提供了 read-ahead 和 write-behind 技术,read-ahead 是以大的 data block 为单位预先读取数据,而 write-behind 是将多个小型的逻辑写合并成一次大型的物理磁盘写入。关于该问题的进一步讨论可以参考 ACM Queue article,他们发现实际上顺序磁盘访问在某些情况下比随机内存访问还要快!

    为了弥补这种性能差异,现代操作系统在越来越注重使用内存对磁盘进行 cache。现代操作系统主动将所有空闲内存用作 disk caching,代价是在内存回收时性能会有所降低。所有对磁盘的读写操作都会通过这个统一的 cache。如果不使用直接I/O,该功能不能轻易关闭。因此即使进程维护了 in-process cache,该数据也可能会被复制到操作系统的 pagecache 中,事实上所有内容都被存储了两份,参考linux中的mmap。

  2. Tree 是最通用的数据结构,可以在消息系统能够支持各种事务性和非事务性语义。 虽然 BTree 的操作复杂度是 O(log N),但成本也相当高。通常我们认为 O(log N) 基本等同于常数时间,但这条在磁盘操作中不成立。磁盘寻址是每10ms一跳,并且每个磁盘同时只能执行一次寻址,因此并行性受到了限制。 因此即使是少量的磁盘寻址也会很高的开销。由于存储系统将非常快的cache操作和非常慢的物理磁盘操作混合在一起,当数据随着 fixed cache 增加时,可以看到树的性能通常是非线性的——比如数据翻倍时性能下降不只两倍。
    所以直观来看,持久化队列可以建立在简单的读取和向文件后追加两种操作之上,这和日志解决方案相同。这种架构的优点在于所有的操作复杂度都是O(1),而且读操作不会阻塞写操作,读操作之间也不会互相影响。

  3. 使用 sendfile 方法,可以允许操作系统将数据从 pagecache 直接发送到网络,这样避免重新复制数据。所以这种优化方式,只需要最后一步的copy操作,将数据复制到 NIC 缓冲区。

    我们期望一个普遍的应用场景,一个 topic 被多消费者消费。使用上面提交的 zero-copy(零拷贝)优化,数据在使用时只会被复制到 pagecache 中一次,节省了每次拷贝到用户空间内存中,再从用户空间进行读取的消耗。这使得消息能够以接近网络连接速度的 上限进行消费。

  4. Kafka 以高效的批处理格式支持一批消息可以压缩在一起发送到服务器。这批消息将以压缩格式写入,并且在日志中保持压缩,只会在 consumer 消费时解压缩。
    Kafka 支持 GZIP,Snappy 和 LZ4 压缩协议。


    ps关于上述中 一些解释,磁盘的顺序读写远远大于随机读写,mmap和sendfile都是linux下的零拷贝的实现,大体就通过减少上下文切换以及个层及之前的内存copy。
     

参考  http://kafka.apachecn.org/documentation.html

猜你喜欢

转载自www.cnblogs.com/imaye/p/12783645.html