最常用的排序——快速排序 (原理和代码)

快速排序的算法基本思想:
     1.选定一个枢纽元素,对待排序序列进行分割
     2.对分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素
     3.再对这两个分割好的子序列进行上述的过程。
 

   

        假设我们现在对“6  1  2  7  9  3  4  5  10  8”这10个数进行排序。首先在这个序列中随 便找一个数作为基准数(不要被这个名词吓到了,这就是一个用来参照的数,待会儿你就知 道它用来做啥了)。为了方便,就让第一个数 6 作为基准数吧。接下来,需要将这个序列中 所有比基准数大的数放在 6的右边,比基准数小的数放在6的左边,类似下面这种排列。     

                3  1  2  5  4  6  9  7  10  8 


        在初始状态下,数字 6在序列的第 1位。我们的目标是将 6挪到序列中间的某个位置, 假设这个位置是 k。现在就需要寻找这个 k,并且以第 k位为分界点,左边的数都小于等于 6, 右边的数都大于等于 6。想一想,你有办法可以做到这点吗?

        给你一个提示吧。请回忆一下冒泡排序是如何通过“交换”一步步让每个数归位的。此时你也可以通过“交换”的方法来达到目的。具体是如何一步步交换呢?怎样交换才既方便又节省时间呢?先别急着往下看,拿出笔来,在纸上画画看。我高中时第一次学习冒泡排序算法的时候,就觉得冒泡排序很浪费时间,每次都只能对相邻的两个数进行比较,这显然太不合理了。于是我就想了一个办法,后来才知道原来这就是“快速排序”,请允许我小小地 自恋一下(^o^)。

        方法其实很简单:分别从初始序列“6  1  2  7  9  3  4  5  10  8”两端开始“探测”。先从 右往左找一个小于 6的数,再从左往右找一个大于 6的数,然后交换它们。这里可以用两个 变量 i和 j,分别指向序列左边和右边。我们为这两个变量起个好听的名字“哨兵 i”和 “哨兵 j”。刚开始的时候让哨兵 i指向序列的左边(即 i=1),指向数字 6。让哨兵 j指向序 列的右边(即 j=10),指向数字 8。 

图片1

        首先哨兵 j开始出动。因为此处设置的基准数是左边的数,所以需要让哨兵 j先出动, 这一点非常重要(请自己想一想为什么)。哨兵 j 一步一步地向左挪动(即 j--),直到找到 一个小于 6的数停下来。接下来哨兵 i再一步一步向右挪动(即 i++),直到找到一个大于 6 的数停下来。后哨兵 j停在了数字 5面前,哨兵 i停在了数字 7面前。

 

图片34

        现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下:
                6  1  2  5  9  3  4  7  10  8

        到此,第一次交换结束。接下来哨兵 j继续向左挪动(再次友情提醒,每次必须是哨兵 j先出发)。他发现了 4(比基准数 6要小,满足要求)之后停了下来。哨兵 i也继续向右挪 动,他发现了 9(比基准数 6要大,满足要求)之后停了下来。此时再次进行交换,交换之 后的序列如下:
                6  1  2  5  4  3  9  7  10  8 

图片45

        第二次交换结束,“探测”继续。哨兵 j继续向左挪动,他发现了 3(比基准数 6要小, 满足要求)之后又停了下来。哨兵 i 继续向右移动,糟啦!此时哨兵 i 和哨兵 j 相遇了,哨 兵 i和哨兵 j都走到 3面前。说明此时“探测”结束。我们将基准数 6和 3进行交换。交换 之后的序列如下:
                3  1  2  5  4  6  9  7  10  8 

图片678

        到此第一轮“探测”真正结束。此时以基准数 6为分界点,6左边的数都小于等于 6,6 右边的数都大于等于 6。回顾一下刚才的过程,其实哨兵 j的使命就是要找小于基准数的数, 而哨兵 i的使命就是要找大于基准数的数,直到 i和 j碰头为止。

        OK,解释完毕。现在基准数 6 已经归位,它正好处在序列的第 6 位。此时我们已经将 原来的序列,以 6为分界点拆分成了两个序列,左边的序列是“3  1  2  5  4”,右边的序列是“9  7  10  8”。接下来还需要分别处理这两个序列,因为 6左边和右边的序列目前都还是很混 乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理 6左边和右 边的序列即可。现在先来处理 6左边的序列吧。

        左边的序列是“3  1  2  5  4”。请将这个序列以 3为基准数进行调整,使得 3左边的数都 小于等于 3,3右边的数都大于等于 3。

        如果你模拟得没有错,调整完毕之后的序列的顺序应该是:  2  1  3  5  4 


        OK,现在 3已经归位。接下来需要处理 3左边的序列“2 1”和右边的序列“5 4”。对 序列“2 1”以 2为基准数进行调整,处理完毕之后的序列为“1 2”,到此 2已经归位。序列 “1”只有一个数,也不需要进行任何处理。至此我们对序列“2 1”已全部处理完毕,得到 的序列是“1 2”。序列“5 4”的处理也仿照此方法,后得到的序列如下:
                1  2  3  4  5  6  9  7  10  8 


        对于序列“9  7  10  8”也模拟刚才的过程,直到不可拆分出新的子序列为止。终将会 得到这样的序列: 
                1  2  3  4  5  6  7  8  9  10 


        到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下 整个算法的处理过程。 

图片9

        快速排序之所以比较快,是因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样只能在相邻的数之间进行交换,交换的距离就大得多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的差时间复杂度和 冒泡排序是一样的,都是 O(N2),它的平均时间复杂度为 O (NlogN)。其实快速排序是基于一 种叫做“二分”的思想。我们后面还会遇到“二分”思想,到时候再聊。先上代码,如下:

#include <stdio.h> 
int a[101],n;//定义全局变量,这两个变量需要在子函数中使用  
 
void quicksort(int left,int right) {   
  
    int i,j,t,temp;     
    
    if(left>right)   return;             
    temp=a[left]; //temp中存的就是基准数  
   
    i=left;     
    j=right;    

     while(i!=j) {        

         //顺序很重要,要先从右往左找         
         while(a[j]>=temp && i<j)   j--;        

         //再从左往右找          
         while(a[i]<=temp && i<j)    i++; 
 
         //交换两个数在数组中的位置
         //当哨兵i和哨兵j没有相遇时          
          if(i<j)  {            
                 t=a[i];             
                 a[i]=a[j];             
                 a[j]=t;         
            }     
    }     


    //终将基准数归位 
     a[left]=a[i];    
     a[i]=temp;          

     quicksort(left,i-1);//继续处理左边的,这里是一个递归的过程      
     quicksort(i+1,right);//继续处理右边的,这里是一个递归的过程  
} 
 




int main() {     

    int i,j,t;    
    //读入数据      
    scanf("%d",&n);     
    for(i=1;i<=n;i++)        
     scanf("%d",&a[i]); 
 
     quicksort(1,n); //快速排序调用           

    //输出排序后的结果      
     for(i=1;i<=n;i++)        
     printf("%d ",a[i]); 
 
     return 0; 
} 




//平均效率O(nlogn),适用于排序大列表。 
/*此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。

        可以输入以下数据进行验证。 

                10

                6  1  2  7  9  3  4  5  10  8 
        运行结果是: 
                1 2 3 4 5 6 7 8 9 10 

        下面是程序执行过程中数组 a的变化过程,带下划线的数表示的是已归位的基准数。 
                6 1 2 7 9 3 4 5 10 8

                3 1 2 5 4 6 9 7 10 8

                2 1 3 5 4 6 9 7 10 8

                1 2 3 5 4 6 9 7 10 8

                1 2 3 5 4 6 9 7 10 8 

                1 2 3 4 5 6 9 7 10 8

                1 2 3 4 5 6 9 7 10 8

                1 2 3 4 5 6 8 7 9 10

                1 2 3 4 5 6 7 8 9 10

                1 2 3 4 5 6 7 8 9 10

                1 2 3 4 5 6 7 8 9 10 

        PS:快速排序由 C. A. R. Hoare(东尼·霍尔,Charles Antony Richard Hoare)在 1960年提出, 之后又有许多人做了进一步的优化,此外对其他排序算法还有兴趣的,请看另一篇文章https://blog.csdn.net/weixin_44040023/article/details/90047468

        又PS:benwenzhangjiejianahaleideshasuanfa

发布了30 篇原创文章 · 获赞 47 · 访问量 2万+

猜你喜欢

转载自blog.csdn.net/weixin_44040023/article/details/103621216