智能交通-场景数据增强(Python CV)

先看变换效果,代码在博客下文:

1. 增大图片的亮度 (图片变亮)

Caption
Caption
Caption

2. 减小图片的亮度 (图片变暗)

Caption
Caption
Caption

3. 模拟下雨场景

Caption
Caption
Caption

4. 模拟下雪场景

Caption
Caption
Caption

5. 模拟起雾场景

Caption
Caption
Caption

6. 模拟运动模糊场景

Caption
Caption
Caption

7. 代码包括Automold.py 和 test.py, test.py调用Automold.py进行测试

import Automold as am
import cv2

img = cv2.imread('test_augmentation/image1.jpg')
img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)


for i in range(20):
    # 测试亮度变化
    #brightness_coeff = i * 0.05
    #bright_img = am.brighten(img, brightness_coeff)
    #bright_img = cv2.cvtColor(bright_img, cv2.COLOR_RGB2BGR)
    #cv2.imwrite("test_imgs/bright_%s.jpg" % i, bright_img)
       
    # 测试暗度变化
    #darkness_coeff = i * 0.05
    #dark_img = am.darken(img, darkness_coeff)
    #dark_img = cv2.cvtColor(dark_img, cv2.COLOR_RGB2BGR)
    #cv2.imwrite("test_imgs/dark_%s.jpg" % i, dark_img)


    # 测试雪量变化
    #snow_coeff = i * 0.05
    #snow_img = am.add_snow(img, snow_coeff)
    #snow_img = cv2.cvtColor(snow_img, cv2.COLOR_RGB2BGR)
    #cv2.imwrite("test_imgs/snow_%s.jpg" % i, snow_img)


    # 测试速度变化
    #speed_coeff = i * 0.05
    #speed_img = am.add_speed(img, speed_coeff)
    #speed_img = cv2.cvtColor(speed_img, cv2.COLOR_RGB2BGR)
    #cv2.imwrite("test_imgs/speed_%s.jpg" % i, speed_img)



    # 测试雾量变化
    #fog_coeff = (i+1) * 0.05
    #fog_img = am.add_fog(img, fog_coeff=fog_coeff)
    #fog_img = cv2.cvtColor(fog_img, cv2.COLOR_RGB2BGR)
    #cv2.imwrite("test_imgs/fog_%s.jpg" % i, fog_img)


    # 测试下雨变化
    if i < 7:
        rain_type = "drizzle"
    elif i > 14:
        rain_type = "torrential"
    else:
        rain_type = "heavy"
    rain_img = am.add_rain(img, rain_type=rain_type)
    rain_img = cv2.cvtColor(rain_img, cv2.COLOR_RGB2BGR)
    cv2.imwrite("test_imgs/rain_%s.jpg" % i, rain_img)
    

# import glob
import cv2 as cv2
import numpy as np
# import matplotlib.pyplot as plt
import random
import math


###################### HLS #############################

def hls(image,src='RGB'):
    verify_image(image)
    if(is_list(image)):
        image_HLS=[]
        image_list=image
        for img in image_list:
            eval('image_HLS.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2HLS))')
    else:
        image_HLS = eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2HLS)')
    return image_HLS

def hue(image,src='RGB'):
    verify_image(image)
    if(is_list(image)):
        image_Hue=[]
        image_list=image
        for img in image_list:
            image_Hue.append(hls(img,src)[:,:,0])
    else:
        image_Hue= hls(image,src)[:,:,0]
    return image_Hue

def lightness(image,src='RGB'):
    verify_image(image)
    if(is_list(image)):
        image_lightness=[]
        image_list=image
        for img in image_list:
            image_lightness.append(hls(img,src)[:,:,1])
    else:
        image_lightness= hls(image,src)[:,:,1]
    return image_lightness

def saturation(image,src='RGB'):
    verify_image(image)
    if(is_list(image)):
        image_saturation=[]
        image_list=image
        for img in image_list:
            image_saturation.append(hls(img,src)[:,:,2])
    else:
        image_saturation= hls(image,src)[:,:,2]
    return image_saturation

###################### HSV #############################

def hsv(image,src='RGB'):
    verify_image(image)
    if(is_list(image)):
        image_HSV=[]
        image_list=image
        for img in image_list:
            eval('image_HSV.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2HSV))')
    else:
        image_HSV = eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2HSV)')
    return image_HSV

def value(image,src='RGB'):
    verify_image(image)
    if(is_list(image)):
        image_value=[]
        image_list=image
        for img in image_list:
            image_value.append(hsv(img,src)[:,:,2])
    else:
        image_value= hsv(image,src)[:,:,2]
    return image_value

###################### BGR #############################

def bgr(image, src='RGB'):
    verify_image(image)
    if(is_list(image)):
        image_BGR=[]
        image_list=image
        for img in image_list:
            eval('image_BGR.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2BGR))')
    else:
        image_BGR= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2BGR)')
    return image_BGR

###################### RGB #############################
def rgb(image, src='BGR'):
    verify_image(image)
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            eval('image_RGB.append(cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB))')
    else:
        image_RGB= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)')
    return image_RGB

def red(image,src='BGR'):
    verify_image(image)
    if(is_list(image)):
        image_red=[]
        image_list=image
        for img in image_list:
            i= eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
            image_red.append(i[:,:,0])
    else:
        image_red= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,0]')
    return image_red

def green(image,src='BGR'):
    verify_image(image)
    if(is_list(image)):
        image_green=[]
        image_list=image
        for img in image_list:
            i= eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
            image_green.append(i[:,:,1])
    else:
        image_green= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,1]')
    return image_green

def blue(image,src='BGR'):
    verify_image(image)
    if(is_list(image)):
        image_blue=[]
        image_list=image
        for img in image_list:
            i=eval('cv2.cvtColor(img,cv2.COLOR_'+src.upper()+'2RGB)')
            image_blue.append(i[:,:,2])
    else:
        image_blue= eval('cv2.cvtColor(image,cv2.COLOR_'+src.upper()+'2RGB)[:,:,2]')
    return image_blue

err_not_np_img= "not a numpy array or list of numpy array" 
err_img_arr_empty="Image array is empty"
err_row_zero="No. of rows can't be <=0"
err_column_zero="No. of columns can't be <=0"
err_invalid_size="Not a valid size tuple (x,y)"
err_caption_array_count="Caption array length doesn't matches the image array length"

def is_numpy_array(x):

    return isinstance(x, np.ndarray)
def is_tuple(x):
    return type(x) is tuple
def is_list(x):
    return type(x) is list
def is_numeric(x):
    return type(x) is int
def is_numeric_list_or_tuple(x):
    for i in x:
        if not is_numeric(i):
            return False
    return True

err_brightness_coeff="brightness coeff can only be between 0.0 to 1.0" 
err_darkness_coeff="darkness coeff can only be between 0.0 to 1.0" 

def change_light(image, coeff):
    image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
    image_HLS = np.array(image_HLS, dtype = np.float64) 
    image_HLS[:,:,1] = image_HLS[:,:,1]*coeff ## scale pixel values up or down for channel 1(Lightness)
    if(coeff>1):
        image_HLS[:,:,1][image_HLS[:,:,1]>255]  = 255 ##Sets all values above 255 to 255
    else:
        image_HLS[:,:,1][image_HLS[:,:,1]<0]=0
    image_HLS = np.array(image_HLS, dtype = np.uint8)
    image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
    return image_RGB 

def verify_image(image):
    if is_numpy_array(image):
        pass
    elif(is_list(image)):
        image_list=image
        for img in image_list:
            if not is_numpy_array(img):
                raise Exception(err_not_np_img)
    else:
        raise Exception(err_not_np_img)

def brighten(image, brightness_coeff=-1): ##function to brighten the image
    verify_image(image)
    if(brightness_coeff!=-1):
        if(brightness_coeff<0.0 or brightness_coeff>1.0):
            raise Exception(err_brightness_coeff)
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            if(brightness_coeff==-1):
                brightness_coeff_t=1+ random.uniform(0,1) ## coeff between 1.0 and 1.5
            else:
                brightness_coeff_t=1+ brightness_coeff ## coeff between 1.0 and 2.0
            image_RGB.append(change_light(img,brightness_coeff_t))
    else:
        if(brightness_coeff==-1):
            brightness_coeff_t=1+ random.uniform(0,1) ## coeff between 1.0 and 1.5
        else:
            brightness_coeff_t=1+ brightness_coeff ## coeff between 1.0 and 2.0
        image_RGB= change_light(image,brightness_coeff_t)
    return image_RGB

def darken(image, darkness_coeff=-1): ##function to darken the image
    verify_image(image)
    if(darkness_coeff!=-1):
        if(darkness_coeff<0.0 or darkness_coeff>1.0):
            raise Exception(err_darkness_coeff) 

    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            if(darkness_coeff==-1):
                darkness_coeff_t=1- random.uniform(0,1)
            else:
                darkness_coeff_t=1- darkness_coeff            
            image_RGB.append(change_light(img,darkness_coeff_t))
    else:
        if(darkness_coeff==-1):
             darkness_coeff_t=1- random.uniform(0,1)
        else:
            darkness_coeff_t=1- darkness_coeff  
        image_RGB= change_light(image,darkness_coeff_t)
    return image_RGB


def random_brightness(image):
    verify_image(image)

    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            random_brightness_coefficient = 2* np.random.uniform(0,1) ## generates value between 0.0 and 2.0
            image_RGB.append(change_light(img,random_brightness_coefficient))
    else:
        random_brightness_coefficient = 2* np.random.uniform(0,1) ## generates value between 0.0 and 2.0
        image_RGB= change_light(image,random_brightness_coefficient)
    return image_RGB

err_shadow_count="only 1-10 shadows can be introduced in an image"
err_invalid_rectangular_roi="Rectangular ROI dimensions are not valid"
err_shadow_dimension="polygons with dim<3 dont exist and >10 take time to plot"

def generate_shadow_coordinates(imshape, no_of_shadows, rectangular_roi, shadow_dimension):
    vertices_list=[]
    x1=rectangular_roi[0]
    y1=rectangular_roi[1]
    x2=rectangular_roi[2]
    y2=rectangular_roi[3]
    for index in range(no_of_shadows):
        vertex=[]
        for dimensions in range(shadow_dimension): ## Dimensionality of the shadow polygon
            vertex.append((random.randint(x1, x2),random.randint(y1, y2)))
        vertices = np.array([vertex], dtype=np.int32) ## single shadow vertices 
        vertices_list.append(vertices)
    return vertices_list ## List of shadow vertices

def shadow_process(image,no_of_shadows,x1,y1,x2,y2, shadow_dimension):
    image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
    mask = np.zeros_like(image) 
    imshape = image.shape
    vertices_list= generate_shadow_coordinates(imshape, no_of_shadows,(x1,y1,x2,y2), shadow_dimension) #3 getting list of shadow vertices
    for vertices in vertices_list: 
        cv2.fillPoly(mask, vertices, 255) ## adding all shadow polygons on empty mask, single 255 denotes only red channel
    image_HLS[:,:,1][mask[:,:,0]==255] = image_HLS[:,:,1][mask[:,:,0]==255]*0.5   ## if red channel is hot, image's "Lightness" channel's brightness is lowered 
    image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
    return image_RGB

def add_shadow(image,no_of_shadows=1,rectangular_roi=(-1,-1,-1,-1), shadow_dimension=5):## ROI:(top-left x1,y1, bottom-right x2,y2), shadow_dimension=no. of sides of polygon generated
    verify_image(image)
    if not(is_numeric(no_of_shadows) and no_of_shadows>=1 and no_of_shadows<=10):
        raise Exception(err_shadow_count)
    if not(is_numeric(shadow_dimension) and shadow_dimension>=3 and shadow_dimension<=10):
        raise Exception(err_shadow_dimension)
    if is_tuple(rectangular_roi) and is_numeric_list_or_tuple(rectangular_roi) and len(rectangular_roi)==4:
        x1=rectangular_roi[0]
        y1=rectangular_roi[1]
        x2=rectangular_roi[2]
        y2=rectangular_roi[3]
    else:
        raise Exception(err_invalid_rectangular_roi)
    if rectangular_roi==(-1,-1,-1,-1):
        x1=0
        
        if(is_numpy_array(image)):
            y1=image.shape[0]//2
            x2=image.shape[1]
            y2=image.shape[0]
        else:
            y1=image[0].shape[0]//2
            x2=image[0].shape[1]
            y2=image[0].shape[0]

    elif x1==-1 or y1==-1 or x2==-1 or y2==-1 or x2<=x1 or y2<=y1:
        raise Exception(err_invalid_rectangular_roi)
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            output=shadow_process(img,no_of_shadows,x1,y1,x2,y2, shadow_dimension)
            image_RGB.append(output)
    else:
        output=shadow_process(image,no_of_shadows,x1,y1,x2,y2, shadow_dimension)
        image_RGB = output

    return image_RGB

err_snow_coeff="Snow coeff can only be between 0 and 1"
def snow_process(image,snow_coeff):
    image_HLS = cv2.cvtColor(image,cv2.COLOR_RGB2HLS) ## Conversion to HLS
    image_HLS = np.array(image_HLS, dtype = np.float64) 
    brightness_coefficient = 2.5 
    imshape = image.shape
    snow_point=snow_coeff ## increase this for more snow
    image_HLS[:,:,1][image_HLS[:,:,1]<snow_point] = image_HLS[:,:,1][image_HLS[:,:,1]<snow_point]*brightness_coefficient ## scale pixel values up for channel 1(Lightness)
    image_HLS[:,:,1][image_HLS[:,:,1]>255]  = 255 ##Sets all values above 255 to 255
    image_HLS = np.array(image_HLS, dtype = np.uint8)
    image_RGB = cv2.cvtColor(image_HLS,cv2.COLOR_HLS2RGB) ## Conversion to RGB
    return image_RGB

def add_snow(image, snow_coeff=-1):
    verify_image(image)
    if(snow_coeff!=-1):
        if(snow_coeff<0.0 or snow_coeff>1.0):
            raise Exception(err_snow_coeff)
    else:
        snow_coeff=random.uniform(0,1)
    snow_coeff*=255/2
    snow_coeff+=255/3
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            output= snow_process(img,snow_coeff)
            image_RGB.append(output) 
    else:
        output= snow_process(image,snow_coeff)
        image_RGB=output

    return image_RGB

err_rain_slant="Numeric value between -20 and 20 is allowed"
err_rain_width="Width value between 1 and 5 is allowed"
err_rain_length="Length value between 0 and 100 is allowed"
def generate_random_lines(imshape,slant,drop_length,rain_type):
    drops=[]
    area=imshape[0]*imshape[1]
    no_of_drops=area//600

    if rain_type.lower()=='drizzle':
        no_of_drops=area//770
        drop_length=10
    elif rain_type.lower()=='heavy':
        drop_length=30
    elif rain_type.lower()=='torrential':
        no_of_drops=area//500
        drop_length=60

    for i in range(no_of_drops): ## If You want heavy rain, try increasing this
        if slant<0:
            x= np.random.randint(slant,imshape[1])
        else:
            x= np.random.randint(0,imshape[1]-slant)
        y= np.random.randint(0,imshape[0]-drop_length)
        drops.append((x,y))
    return drops,drop_length

def rain_process(image,slant,drop_length,drop_color,drop_width,rain_drops):
    imshape = image.shape  
    image_t= image.copy()
    for rain_drop in rain_drops:
        cv2.line(image_t,(rain_drop[0],rain_drop[1]),(rain_drop[0]+slant,rain_drop[1]+drop_length),drop_color,drop_width)
    image= cv2.blur(image_t,(7,7)) ## rainy view are blurry
    brightness_coefficient = 0.7 ## rainy days are usually shady 
    image_HLS = hls(image) ## Conversion to HLS
    image_HLS[:,:,1] = image_HLS[:,:,1]*brightness_coefficient ## scale pixel values down for channel 1(Lightness)
    image_RGB= rgb(image_HLS,'hls') ## Conversion to RGB
    return image_RGB

##rain_type='drizzle','heavy','torrential'
def add_rain(image,slant=-1,drop_length=20,drop_width=1,drop_color=(200,200,200),rain_type='None'): ## (200,200,200) a shade of gray
    verify_image(image)
    slant_extreme=slant
    if not(is_numeric(slant_extreme) and (slant_extreme>=-20 and slant_extreme<=20)or slant_extreme==-1):
        raise Exception(err_rain_slant)
    if not(is_numeric(drop_width) and drop_width>=1 and drop_width<=5):
        raise Exception(err_rain_width)
    if not(is_numeric(drop_length) and drop_length>=0 and drop_length<=100):
        raise Exception(err_rain_length)

    if(is_list(image)):
        image_RGB=[]
        image_list=image
        imshape = image[0].shape
        if slant_extreme==-1:
            slant= np.random.randint(-10,10) ##generate random slant if no slant value is given
        rain_drops,drop_length= generate_random_lines(imshape,slant,drop_length,rain_type)
        for img in image_list:
            output= rain_process(img,slant_extreme,drop_length,drop_color,drop_width,rain_drops)
            image_RGB.append(output)
    else:
        imshape = image.shape
        if slant_extreme==-1:
            slant= np.random.randint(-10,10) ##generate random slant if no slant value is given
        rain_drops,drop_length= generate_random_lines(imshape,slant,drop_length,rain_type)
        output= rain_process(image,slant_extreme,drop_length,drop_color,drop_width,rain_drops)
        image_RGB=output

    return image_RGB

err_fog_coeff="Fog coeff can only be between 0 and 1"
def add_blur(image, x,y,hw,fog_coeff):
    overlay= image.copy()
    output= image.copy()
    alpha= 0.08*fog_coeff
    rad= hw//2
    point=(x+hw//2, y+hw//2)
    cv2.circle(overlay,point, int(rad), (255,255,255), -1)
    cv2.addWeighted(overlay, alpha, output, 1 -alpha ,0, output)
    return output

def generate_random_blur_coordinates(imshape,hw):
    blur_points=[]
    midx= imshape[1]//2-2*hw
    midy= imshape[0]//2-hw
    index=1
    while(midx>-hw or midy>-hw):
        for i in range(hw//10*index):
            x= np.random.randint(midx,imshape[1]-midx-hw)
            y= np.random.randint(midy,imshape[0]-midy-hw)
            blur_points.append((x,y))
        midx-=3*hw*imshape[1]//sum(imshape)
        midy-=3*hw*imshape[0]//sum(imshape)
        index+=1
    return blur_points

def add_fog(image, fog_coeff=-1):
    verify_image(image)

    if(fog_coeff!=-1):
        if(fog_coeff<0.0 or fog_coeff>1.0):
            raise Exception(err_fog_coeff)
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        imshape = image[0].shape

        for img in image_list:
            if fog_coeff==-1:
                fog_coeff_t=random.uniform(0.3,1)
            else:
                fog_coeff_t=fog_coeff
            hw=int(imshape[1]//3*fog_coeff_t)
            haze_list= generate_random_blur_coordinates(imshape,hw)
            for haze_points in haze_list: 
                img= add_blur(img, haze_points[0],haze_points[1], hw,fog_coeff_t) ## adding all shadow polygons on empty mask, single 255 denotes only red channel
            img = cv2.blur(img ,(hw//10,hw//10))
            image_RGB.append(img) 
    else:
        imshape = image.shape
        if fog_coeff==-1:
            fog_coeff_t=random.uniform(0.3,1)
        else:
            fog_coeff_t=fog_coeff
        hw=int(imshape[1]//3*fog_coeff_t)
        haze_list= generate_random_blur_coordinates(imshape,hw)
        for haze_points in haze_list: 
            image= add_blur(image, haze_points[0],haze_points[1], hw,fog_coeff_t) 
        image = cv2.blur(image ,(hw//10,hw//10))
        image_RGB = image

    return image_RGB

def generate_gravel_patch(rectangular_roi):
    x1=rectangular_roi[0]
    y1=rectangular_roi[1]
    x2=rectangular_roi[2]
    y2=rectangular_roi[3] 
    gravels=[]
    area= abs((x2-x1)*(y2-y1))
    for i in range((int)(area//10)):
        x= np.random.randint(x1,x2)
        y= np.random.randint(y1,y2)
        gravels.append((x,y))
    return gravels

def gravel_process(image,x1,x2,y1,y2,no_of_patches):
    x=image.shape[1]
    y=image.shape[0]
    rectangular_roi_default=[]
    for i in range(no_of_patches):
        xx1=random.randint(x1, x2)
        xx2=random.randint(x1, xx1)
        yy1=random.randint(y1, y2)
        yy2=random.randint(y1, yy1)
        rectangular_roi_default.append((xx2,yy2,min(xx1,xx2+200),min(yy1,yy2+30)))
    img_hls=hls(image)
    for roi in rectangular_roi_default:
        gravels= generate_gravel_patch(roi)
        for gravel in gravels:
            x=gravel[0]
            y=gravel[1]
            r=random.randint(1, 4)
            r1=random.randint(0, 255)
            img_hls[max(y-r,0):min(y+r,y),max(x-r,0):min(x+r,x),1]=r1
    image_RGB= rgb(img_hls,'hls') 
    return image_RGB

def add_gravel(image,rectangular_roi=(-1,-1,-1,-1), no_of_patches=8):
    verify_image(image)
    if is_tuple(rectangular_roi) and is_numeric_list_or_tuple(rectangular_roi) and len(rectangular_roi)==4:
        x1=rectangular_roi[0]
        y1=rectangular_roi[1]
        x2=rectangular_roi[2]
        y2=rectangular_roi[3]
    else:
        raise Exception(err_invalid_rectangular_roi)
    if rectangular_roi==(-1,-1,-1,-1):
        if(is_numpy_array(image)):
            x1=0
            y1=int(image.shape[0]*3/4)
            x2=image.shape[1]
            y2=image.shape[0]
        else:
            x1=0
            y1=int(image[0].shape[0]*3/4)
            x2=image[0].shape[1]
            y2=image[0].shape[0]
    elif x1==-1 or y1==-1 or x2==-1 or y2==-1 or x2<=x1 or y2<=y1:
        raise Exception(err_invalid_rectangular_roi)
    color=[0,255]  
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            output= gravel_process(img,x1,x2,y1,y2,no_of_patches)
            image_RGB.append(output)
    else:
        output= gravel_process(image,x1,x2,y1,y2,no_of_patches)
        image_RGB= output    
    return image_RGB

err_flare_circle_count="Numeric value between 0 and 20 is allowed"
def flare_source(image, point,radius,src_color):
    overlay= image.copy()
    output= image.copy()
    num_times=radius//10
    alpha= np.linspace(0.0,1,num= num_times)
    rad= np.linspace(1,radius, num=num_times)
    for i in range(num_times):
        cv2.circle(overlay,point, int(rad[i]), src_color, -1)
        alp=alpha[num_times-i-1]*alpha[num_times-i-1]*alpha[num_times-i-1]
        cv2.addWeighted(overlay, alp, output, 1 -alp ,0, output)
    return output

def add_sun_flare_line(flare_center,angle,imshape):
    x=[]
    y=[]
    i=0
    for rand_x in range(0,imshape[1],10):
        rand_y= math.tan(angle)*(rand_x-flare_center[0])+flare_center[1]
        x.append(rand_x)
        y.append(2*flare_center[1]-rand_y)
    return x,y

def add_sun_process(image, no_of_flare_circles,flare_center,src_radius,x,y,src_color):
    overlay= image.copy()
    output= image.copy()
    imshape=image.shape
    for i in range(no_of_flare_circles):
        alpha=random.uniform(0.05,0.2)
        r=random.randint(0, len(x)-1)
        rad=random.randint(1, imshape[0]//100-2)
        cv2.circle(overlay,(int(x[r]),int(y[r])), rad*rad*rad, (random.randint(max(src_color[0]-50,0), src_color[0]),random.randint(max(src_color[1]-50,0), src_color[1]),random.randint(max(src_color[2]-50,0), src_color[2])), -1)
        cv2.addWeighted(overlay, alpha, output, 1 - alpha,0, output)                      
    output= flare_source(output,(int(flare_center[0]),int(flare_center[1])),src_radius,src_color)
    return output

def add_sun_flare(image,flare_center=-1, angle=-1, no_of_flare_circles=8,src_radius=400, src_color=(255,255,255)):
    verify_image(image)
    if(angle!=-1):
        angle=angle%(2*math.pi)
    if not(no_of_flare_circles>=0 and no_of_flare_circles<=20):
        raise Exception(err_flare_circle_count)
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        imshape=image_list[0].shape
        for img in image_list: 
            if(angle==-1):
                angle_t=random.uniform(0,2*math.pi)
                if angle_t==math.pi/2:
                    angle_t=0
            else:
                angle_t=angle
            if flare_center==-1:   
                flare_center_t=(random.randint(0,imshape[1]),random.randint(0,imshape[0]//2))
            else:
                flare_center_t=flare_center
            x,y= add_sun_flare_line(flare_center_t,angle_t,imshape)
            output= add_sun_process(img, no_of_flare_circles,flare_center_t,src_radius,x,y,src_color)
            image_RGB.append(output)
    else:
        imshape=image.shape
        if(angle==-1):
            angle_t=random.uniform(0,2*math.pi)
            if angle_t==math.pi/2:
                angle_t=0
        else:
            angle_t=angle
        if flare_center==-1:
            flare_center_t=(random.randint(0,imshape[1]),random.randint(0,imshape[0]//2))
        else:
            flare_center_t=flare_center
        x,y= add_sun_flare_line(flare_center_t,angle_t,imshape)
        output= add_sun_process(image, no_of_flare_circles,flare_center_t,src_radius,x,y,src_color)
        image_RGB = output
    return image_RGB

err_speed_coeff="Speed coeff can only be between 0 and 1"
def apply_motion_blur(image,count):
    image_t=image.copy()
    imshape=image_t.shape
    size=15
    kernel_motion_blur = np.zeros((size, size))
    kernel_motion_blur[int((size-1)/2), :] = np.ones(size)
    kernel_motion_blur = kernel_motion_blur / size
    i= imshape[1]*3//4 - 10*count
    while(i<=imshape[1]):
        image_t[:,i:,:] = cv2.filter2D(image_t[:,i:,:], -1, kernel_motion_blur)
        image_t[:,:imshape[1]-i,:] = cv2.filter2D(image_t[:,:imshape[1]-i,:], -1, kernel_motion_blur)
        i+=imshape[1]//25-count
        count+=1
    image_RGB=image_t
    return image_RGB

def add_speed(image, speed_coeff=-1):
    verify_image(image)
    if(speed_coeff !=-1):
        if(speed_coeff<0.0 or speed_coeff>1.0):
            raise Exception(err_speed_coeff)
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            if(speed_coeff==-1):
                count_t=int(15*random.uniform(0,1))
            else:
                count_t=int(15*speed_coeff)
            img=apply_motion_blur(img,count_t)
            image_RGB.append(img)
    else:
        if(speed_coeff==-1):
            count_t=int(15*random.uniform(0,1))
        else:
            count_t=int(15*speed_coeff)
        image_RGB= apply_motion_blur(image,count_t)


    return image_RGB


# In[159]:


def autumn_process(image):
    image_t=image.copy()
    imshape=image_t.shape
    image_hls= hls(image_t)
    step=8
    aut_colors=[1,5,9,11]
    col= aut_colors[random.randint(0,3)]
    for i in range(0,imshape[1],step):
        for j in range(0,imshape[0],step):
            avg=np.average(image_hls[j:j+step,i:i+step,0])
#             print(avg)
            if(avg >20 and avg< 100 and np.average(image[j:j+step,i:i+step,1])<100):
                image_hls[j:j+step,i:i+step,0]= col
                image_hls[j:j+step,i:i+step,2]=255
    return rgb(image_hls,'hls')


def add_autumn(image):
    verify_image(image)

    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:

            img=autumn_process(img)
            image_RGB.append(img)
    else:
        image=autumn_process(image)
        image_RGB= image

    return image_RGB

def fliph(image): ##function to flip the image on horizontal axis
    verify_image(image)
    
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            image_RGB.append(cv2.flip(img,0))
    else:
        image_RGB= cv2.flip(image,0)
    return image_RGB

def flipv(image): ##function to flip the image on vertical axis
    verify_image(image)
    
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            image_RGB.append(cv2.flip(img,1))
    else:
        image_RGB= cv2.flip(image,1)
    return image_RGB

def random_flip(image): ##function to flip the image on horizontal axis
    verify_image(image)
    
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            p= random.uniform(0,1)
            if(p>0.5):
                image_RGB.append(cv2.flip(img,0))
            else:
                image_RGB.append(cv2.flip(img,1))
    else:
        p= random.uniform(0,1)
        if(p>0.5):
            image_RGB=cv2.flip(image,0)
        else:
            image_RGB=cv2.flip(image,1)
    return image_RGB

# def edges(image,threshold1=100, threshold2=150): ##function to flip the image on horizontal axis
#     verify_image(image)
    
#     if(is_list(image)):
#         image_RGB=[]
#         image_list=image
#         for img in image_list:
#             image_RGB.append(cv2.Canny(img,threshold1,threshold2))
#     else:
#         image_RGB=cv2.Canny(img,threshold1,threshold2)
#     return image_RGB

def manhole_process(image,center,height,width,src_color=(0,0,0)):
    overlay= image.copy()
    output= image.copy()
#     cv2.ellipse(overlay, center =center,box=None,color =src_color)
    cv2.ellipse(overlay, center, (width,height), 0, 0, 360, src_color, -1)
#     cv2.circle(overlay, center, radius, src_color, -1)
    alp=1
    cv2.addWeighted(overlay, alp, output, 1 -alp ,0, output)
    return output

err_invalid_center_manhole="center should be in the format (x,y)"
err_invalid_height_width_manhole="height and width should be positive integers."
def add_manhole(image,center=-1,color=(120,120,120),height=1,width=1, type='closed'): ##function to flip the image on horizontal axis
    verify_image(image)

    if(center!=-1):
        if not(is_tuple(center) and is_numeric_list_or_tuple(center) and len(center)==2):
            raise Exception(err_invalid_center_manhole)
    if not (is_numeric(height) and is_numeric(width) and height>0 and width>0):
        raise Exception(err_invalid_height_width_manhole)
    if color==(120,120,120):
        if type=='closed':
            color=(67,70,75)
        elif type=='open':
            color=(0,0,0)
        
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            height_t=height
            width_t=width
            center_t=center
            if height==1:
                height_t=img.shape[0]//25
            if width==1:
                width_t=int(img.shape[0]*3//25)
            if center==-1:
                center_t= (img.shape[0]-100, img.shape[1]//2)
            image_RGB.append(manhole_process(img,center_t,height_t,width_t,color))
    else:
        height_t=height
        width_t=width
        center_t=center
        if height==1:
            height_t=image.shape[0]//25
        if width==1:
            width_t=int(image.shape[0]*3//25) 
        if center==-1:
            center= (image.shape[0]-100, image.shape[1]//2)
        image_RGB= manhole_process(image,center_t,height_t,width_t,color)
    return image_RGB

def exposure_process(image):
    image= np.copy(image)
    img_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4,4))
    ones= np.ones(img_yuv[:,:,0].shape)
    ones[img_yuv[:,:,0]>150]= 0.85
    img_yuv[:,:,0]= img_yuv[:,:,0]*ones

    img_yuv[:,:,0] = clahe.apply(img_yuv[:,:,0])
    img_yuv[:,:,0] = cv2.equalizeHist(img_yuv[:,:,0])
    img_yuv[:,:,0] = clahe.apply(img_yuv[:,:,0])

    image_res = cv2.cvtColor(img_yuv, cv2.COLOR_YUV2BGR)
    image_res= cv2.fastNlMeansDenoisingColored(image_res,None,3,3,7,21)
    return image_res

def correct_exposure(image):
    verify_image(image)
    if(is_list(image)):
        image_RGB=[]
        image_list=image
        for img in image_list:
            image_RGB.append(exposure_process(img))
    else:
        image_RGB= exposure_process(image)
    return image_RGB
            
err_aug_type='wrong augmentation function is defined'
err_aug_list_type='aug_types should be a list of string function names'
err_aug_volume='volume type can only be "same" or "expand"'
def augment_random(image, aug_types="", volume='expand' ):
    
    aug_types_all=["random_brightness","add_shadow","add_snow","add_rain","add_fog","add_gravel","add_sun_flare","add_speed","add_autumn","random_flip","add_manhole"]
    if aug_types=="":
        aug_types=aug_types_all
    output=[]
    if not(is_list(aug_types)):
        raise Exception(err_aug_list_type)
    
    if volume=='expand':
        for aug_type in aug_types:

            if not(aug_type in aug_types_all):
                raise Exception(err_aug_type)
            command=aug_type+'(image)'
            result=eval(command)
            if(is_list(result)):
                output+=result
            else:
                output.append(result)
    elif volume=='same':
        verify_image(image)
        for aug_type in aug_types:
            if not(aug_type in aug_types_all):
                raise Exception(err_aug_type)
        if(is_list(image)):
            image_list=image
            for img in image_list:
                selected_aug=aug_types[random.randint(0,len(aug_types)-1)]
                command=selected_aug+'(img)'
                output.append(eval(command))
        else:
            selected_aug=aug_types[random.randint(0,len(aug_types)-1)]
            command=selected_aug+'(image)'
            output=eval(command)

    else: 
        raise Exception(err_aug_volume)

    return output
发布了10 篇原创文章 · 获赞 14 · 访问量 1320

猜你喜欢

转载自blog.csdn.net/Guo_Python/article/details/105541300
CV