Java源码解析和面试题 - ArrayBlockingQueue 源码解析

这系列相关博客,参考慕课专栏 面试官系统精讲Java源码及大厂真题
下方是本专栏 GitHub 地址:
源码解析:https://github.com/luanqiu/java8
文章 demo:https://github.com/luanqiu/java8_demo
同学们有需要可以对照着来看 )

Java源码解析和面试题 - ArrayBlockingQueue 源码解析

引导语
本小节我们来介绍本章最后一个队列:ArrayBlockingQueue。按照字面翻译,中文叫做数组阻塞队列,从名称上看,我们就比较清楚此阻塞队列底层使用的是数组。一说到数组,大家可能会想到 ArrayList 和 HashMap,举新增场景来说 ArrayList 通过 size ++ 找到新增的数组下标位置,HashMap 通过 hash 算法计算出下标位置,那么 ArrayBlockingQueue 是不是也是这两种方法呢?都不是,ArrayBlockingQueue 使用的是一种非常奇妙的方式,我们一起拭目以待。

全文为了方便说明,队头的说法就是数组头,队尾的说法就是数组尾。

1 整体架构

我们从类注释上可以得到一些有用的信息:

1.1 类注释

  1. 有界的阻塞数组,容量一旦创建,后续大小无法修改;
  2. 元素是有顺序的,按照先入先出进行排序,从队尾插入数据数据,从队头拿数据;
  3. 队列满时,往队列中 put 数据会被阻塞,队列空时,往队列中拿数据也会被阻塞。

从类注释上可以看出 ArrayBlockingQueue 和一般的数组结构的类不太一样,是不能够动态扩容的,如果队列满了或者空时,take 和 put 都会被阻塞。

1.2 数据结构

// 队列存放在 object 的数组里面
// 数组大小必须在初始化的时候手动设置,没有默认大小
final Object[] items;
 
// 下次拿数据的时候的索引位置
int takeIndex;
 
// 下次放数据的索引位置
int putIndex;
 
// 当前已有元素的大小
int count;
 
// 可重入的锁
final ReentrantLock lock;
 
// take的队列
private final Condition notEmpty;
 
// put的队列
private final Condition notFull;

以上代码有两个关键的字段,takeIndex 和 putIndex,分别表示下次拿数据和放数据的索引位置。所以说在新增数据和拿数据时,都无需计算,就能知道应该新增到什么位置,应该从什么位置拿数据。

2 初始化

初始化时,有两个重要的参数:数组的大小、是否是公平,源码如下:

public ArrayBlockingQueue(int capacity, boolean fair) {
    if (capacity <= 0)
        throw new IllegalArgumentException();
    this.items = new Object[capacity];
    lock = new ReentrantLock(fair);
    // 队列不为空 Condition,在 put 成功时使用
    notEmpty = lock.newCondition();
    // 队列不满 Condition,在 take 成功时使用
    notFull =  lock.newCondition();
}

从源码中我们可以看出,第二个参数是否公平,主要用于读写锁是否公平,如果是公平锁,那么在锁竞争时,就会按照先来先到的顺序,如果是非公平锁,锁竞争时随机的。

对于锁公平和非公平,我们举个例子:比如说现在队列是满的,还有很多线程执行 put 操作,必然会有很多线程阻塞等待,当有其它线程执行 take 时,会唤醒等待的线程,如果是公平锁,会按照阻塞等待的先后顺序,依次唤醒阻塞的线程,如果是非公平锁,会随机唤醒沉睡的线程。

所以说队列满很多线程执行 put 操作时,如果是公平锁,数组元素新增的顺序就是阻塞线程被释放的先后顺序,是有顺序的,而非公平锁,由于阻塞线程被释放的顺序是随机的,所以元素插入到数组的顺序也就不会按照插入的顺序了。

队列空时,也是一样的道理。

ArrayBlockingQueue 通过锁的公平和非公平,轻松实现了数组元素的插入顺序的问题。如果要实现这个功能,你会怎么做呢?会想到利用锁的功能么?其实这种思想我们在文中多次提到,当我们需要完成一件事情时,首先看看已有的 API 能不能满足,如果可以的话,通过继承和组合的方式来实现,ArrayBlockingQueue 就是组合了锁的功能

初始化时,如果给定了原始数据的话,一定要注意原始数据的大小一定要小于队列的容量,否则会抛异常,如下图所示:
在这里插入图片描述
我们写了一个 demo,报错如下:
在这里插入图片描述

3 新增数据

数据新增都会按照 putIndex 的位置进行新增,源码如下:

// 新增,如果队列满,无限阻塞
public void put(E e) throws InterruptedException {
    // 元素不能为空
    checkNotNull(e);
    final ReentrantLock lock = this.lock;
    lock.lockInterruptibly();
    try {
        // 队列如果是满的,就无限等待
        // 一直等待队列中有数据被拿走时,自己被唤醒
        while (count == items.length)
            notFull.await();
        enqueue(e);
    } finally {
        lock.unlock();
    }
}
 
private void enqueue(E x) {
    // assert lock.getHoldCount() == 1; 同一时刻只能一个线程进行操作此方法
    // assert items[putIndex] == null;
    final Object[] items = this.items;
    // putIndex 为本次插入的位置
    items[putIndex] = x;
    // ++ putIndex 计算下次插入的位置
    // 如果下次插入的位置,正好等于队尾,下次插入就从 0 开始
    if (++putIndex == items.length)
        putIndex = 0;
    count++;
    // 唤醒因为队列空导致的等待线程
    notEmpty.signal();
}

从源码中,我们可以看出,其实新增就两种情况:

  1. 本次新增的位置居中,直接新增,下图演示的是 putIndex 在数组下标为 5 的位置,还不到队尾,那么可以直接新增,计算下次新增的位置应该是 6;
    在这里插入图片描述
  2. 新增的位置到队尾了,那么下次新增时就要从头开始了,示意图如下:
    在这里插入图片描述
    上面这张图演示的就是这行代码:if (++putIndex == items.length) putIndex = 0;

可以看到当新增到队尾时,下次新增会重新从队头重新开始。

4 拿数据

拿数据都是从队头开始拿数据,源码如下:

public E take() throws InterruptedException {
    final ReentrantLock lock = this.lock;
    lock.lockInterruptibly();
    try {
        // 如果队列为空,无限等待
        // 直到队列中有数据被 put 后,自己被唤醒
        while (count == 0)
            notEmpty.await();
        // 从队列中拿数据
        return dequeue();
    } finally {
        lock.unlock();
    }
}
 
private E dequeue() {
    final Object[] items = this.items;
    // takeIndex 代表本次拿数据的位置,是上一次拿数据时计算好的
    E x = (E) items[takeIndex];
    // 帮助 gc
    items[takeIndex] = null;
    // ++ takeIndex 计算下次拿数据的位置
    // 如果正好等于队尾的话,下次就从 0 开始拿数据
    if (++takeIndex == items.length)
        takeIndex = 0;
    // 队列实际大小减 1
    count--;
    if (itrs != null)
        itrs.elementDequeued();
    // 唤醒被队列满所阻塞的线程
    notFull.signal();
    return x;
}

从源码中可以看出,每次拿数据的位置就是 takeIndex 的位置,在找到本次该拿的数据之后,会把 takeIndex 加 1,计算下次拿数据时的索引位置,有个特殊情况是,如果本次拿数据的位置已经是队尾了,那么下次拿数据的位置就要从头开始,就是从 0 开始了。

5 删除数据

删除数据很有意思,我们一起来看下核心源码:

// 一共有两种情况:
// 1:删除位置和 takeIndex 的关系:删除位置和 takeIndex 一样,比如 takeIndex 是 2, 而要删除的位置正好也是 2,那么就把位置 2 的数据置为 null ,并重新计算 takeIndex 为 3。
// 2:找到要删除元素的下一个,计算删除元素和 putIndex 的关系
// 如果下一个元素不是 putIndex,就把下一个元素往前移动一位
// 如果下一个元素是 putIndex,把 putIndex 的值修改成删除的位置
void removeAt(final int removeIndex) {
    final Object[] items = this.items;
    // 情况1 如果删除位置正好等于下次要拿数据的位置
    if (removeIndex == takeIndex) {
        // 下次要拿数据的位置直接置空
        items[takeIndex] = null;
        // 要拿数据的位置往后移动一位
        if (++takeIndex == items.length)
            takeIndex = 0;
        // 当前数组的大小减一
        count--;
        if (itrs != null)
            itrs.elementDequeued();
    // 情况 2
    } else {
        final int putIndex = this.putIndex;
        for (int i = removeIndex;;) {
            // 找到要删除元素的下一个
            int next = i + 1;
            if (next == items.length)
                next = 0;
            // 下一个元素不是 putIndex
            if (next != putIndex) {
                // 下一个元素往前移动一位
                items[i] = items[next];
                i = next;
            // 下一个元素是 putIndex
            } else {
                // 删除元素
                items[i] = null;
                // 下次放元素时,应该从本次删除的元素放
                this.putIndex = i;
                break;
            }
        }
        count--;
        if (itrs != null)
            itrs.removedAt(removeIndex);
    }
    notFull.signal();
}

删除数据的情况比较复杂,一共有两种情况,第一种情况是 takeIndex == removeIndex,我们画个示意图来看下处理方式:
在这里插入图片描述
第二种情况又分两种:

  1. 如果 removeIndex + 1 != putIndex 的话,就把下一个元素往前移动一位,示意图如下:
    在这里插入图片描述
  2. 如果 removeIndex + 1 == putIndex 的话,就把 putIndex 的值修改成删除的位置,示意图如下:
    在这里插入图片描述

ArrayBlockingQueue 的删除方法其实还蛮复杂的,需要考虑到很多特殊的场景。

6 总结

ArrayBlockingQueue 底层是有界的数组,整体来说,和其它队列差别不多,需要注意的是,当 takeIndex、putIndex 到队尾的时候,都会重新从 0 开始循环,这点是比较特殊的,在我们学习源码时,需要特别注意。

发布了40 篇原创文章 · 获赞 1 · 访问量 4983

猜你喜欢

转载自blog.csdn.net/aha_jasper/article/details/105525628