【Netty基础到入门】2. Netty核心功能与线程模型

Netty初探

NIO 的类库和 API 繁杂, 使用麻烦: 需要熟练掌握Selector、 ServerSocketChannel、 SocketChannel、 ByteBuffer等。
开发工作量和难度都非常大: 例如客户端面临断连重连、 网络闪断、心跳处理、半包读写、 网络拥塞 和异常流的处理等等。
Netty 对 JDK 自带的 NIO 的 API 进行了良好的封装,解决了上述问题。且Netty拥有高性能、 吞吐 量更高,延迟更低,减少资源消耗,最小化不必要的内存复制等优点。
Netty 现在都在用的是4.x,5.x版本已经废弃,Netty 4.x 需要JDK 6以上版本支持

Netty的使用场景:

1)互联网行业:在分布式系统中,各个节点之间需要远程服务调用,高性能的 RPC 框架必不可少, Netty 作为异步高性能的通信框架,往往作为基础通信组件被这些 RPC 框架使用。典型的应用有:阿 里分布式服务框架 Dubbo 的 RPC 框架使用 Dubbo 协议进行节点间通信,Dubbo 协议默认使用 Netty 作为基础通信组件,用于实现。各进程节点之间的内部通信。Rocketmq底层也是用的Netty作 为基础通信组件。
2)游戏行业:无论是手游服务端还是大型的网络游戏,Java 语言得到了越来越广泛的应用。Netty 作为高性能的基础通信组件,它本身提供了 TCP/UDP 和 HTTP 协议栈。
3)大数据领域:经典的 Hadoop 的高性能通信和序列化组件 Avro 的 RPC 框架,默认采用 Netty 进行跨界点通信,它的 Netty Service 基于 Netty 框架二次封装实现。 netty相关开源项目:https://netty.io/wiki/related-projects.html

Netty线程模型

可以先理解下《Scalable IO in Java》这篇文章里说的一些IO处理模式,Netty的线程模型如下图所 示:

模型解释:

  1. Netty 抽象出两组线程池BossGroup和WorkerGroup,BossGroup专门负责接收客户端的连接, WorkerGroup专门负责网络的读写
  2. BossGroup和WorkerGroup类型都是NioEventLoopGroup
  3. NioEventLoopGroup 相当于一个事件循环线程组, 这个组中含有多个事件循环线程 , 每一个事件 循环线程是NioEventLoop
  4. 每个NioEventLoop都有一个selector , 用于监听注册在其上的socketChannel的网络通讯
  5. 每个Boss NioEventLoop线程内部循环执行的步骤有 3 步
  • 处理accept事件 , 与client 建立连接 , 生成 NioSocketChannel
  • 将NioSocketChannel注册到某个worker NIOEventLoop上的selector
  • 处理任务队列的任务 , 即runAllTasks
  1. 每个worker NIOEventLoop线程循环执行的步骤
  • 轮询注册到自己selector上的所有NioSocketChannel 的read, write事件
  • 处理 I/O 事件, 即read , write 事件, 在对应NioSocketChannel 处理业务
  • runAllTasks处理任务队列TaskQueue的任务 ,一些耗时的业务处理一般可以放入TaskQueue中慢慢处理,这样不影响数据在 pipeline 中的流动处理
  1. 每个worker NIOEventLoop处理NioSocketChannel业务时,会使用 pipeline (管道),管道中维护 了很多 handler 处理器用来处理 channel 中的数据

Netty模块组件

【Bootstrap、ServerBootstrap】:

Bootstrap 意思是引导,一个 Netty 应用通常由一个 Bootstrap 开始,主要作用是配置整个 Netty 程 序,串联各个组件,Netty 中 Bootstrap 类是客户端程序的启动引导类,ServerBootstrap 是服务端 启动引导类。

【Future、ChannelFuture】:

正如前面介绍,在 Netty 中所有的 IO 操作都是异步的,不能立刻得知消息是否被正确处理。 但是可以过一会等它执行完成或者直接注册一个监听,具体的实现就是通过 Future 和 ChannelFutures,他们可以注册一个监听,当操作执行成功或失败时监听会自动触发注册的监听事 件。

【Channel】:

Netty 网络通信的组件,能够用于执行网络 I/O 操作。Channel 为用户提供: 1)当前网络连接的通道的状态(例如是否打开?是否已连接?)
2)网络连接的配置参数 (例如接收缓冲区大小)
3)提供异步的网络 I/O 操作(如建立连接,读写,绑定端口),异步调用意味着任何 I/O 调用都将立即 返回,并且不保证在调用结束时所请求的 I/O 操作已完成。
4)调用立即返回一个 ChannelFuture 实例,通过注册监听器到 ChannelFuture 上,可以 I/O 操作成 功、失败或取消时回调通知调用方。
5)支持关联 I/O 操作与对应的处理程序。
不同协议、不同的阻塞类型的连接都有不同的 Channel 类型与之对应。
下面是一些常用的 Channel 类型:

NioSocketChannel,异步的客户端 TCP Socket 连接。
NioServerSocketChannel,异步的服务器端 TCP Socket 连接。 
NioDatagramChannel,异步的 UDP 连接。
NioSctpChannel,异步的客户端 Sctp 连接。
NioSctpServerChannel,异步的 Sctp 服务器端连接,这些通道涵盖了 UDP 和 TCP 网络 IO 以及文 件 IO。

【Selector】:

Netty 基于 Selector 对象实现 I/O 多路复用,通过 Selector 一个线程可以监听多个连接的 Channel 事件。
当向一个 Selector 中注册 Channel 后,Selector 内部的机制就可以自动不断地查询(Select) 这些注册 的 Channel 是否有已就绪的 I/O 事件(例如可读,可写,网络连接完成等),这样程序就可以很简单 地使用一个线程高效地管理多个 Channel 。

【NioEventLoop】:

NioEventLoop 中维护了一个线程和任务队列,支持异步提交执行任务,线程启动时会调用 NioEventLoop 的 run 方法,执行 I/O 任务和非 I/O 任务:
I/O 任务,即 selectionKey 中 ready 的事件,如 accept、connect、read、write 等,由 processSelectedKeys 方法触发。非 IO 任务,添加到 taskQueue 中的任务,如 register0、bind0 等任务,由 runAllTasks 方法触发。

【NioEventLoopGroup】:

NioEventLoopGroup,主要管理 eventLoop 的生命周期,可以理解为一个线程池,内部维护了一组 线程,每个线程(NioEventLoop)负责处理多个 Channel 上的事件,而一个 Channel 只对应于一个线 程。

【ChannelHandler】:

ChannelHandler 是一个接口,处理 I/O 事件或拦截 I/O 操作,并将其转发到其 ChannelPipeline(业 务处理链)中的下一个处理程序。
ChannelHandler 本身并没有提供很多方法,因为这个接口有许多的方法需要实现,方便使用期间, 可以继承它的子类:

ChannelInboundHandler 用于处理入站 I/O 事件。 
ChannelOutboundHandler 用于处理出站 I/O 操作。

或者使用以下适配器类:

ChannelInboundHandlerAdapter 用于处理入站 I/O 事件。 
ChannelOutboundHandlerAdapter 用于处理出站 I/O 操作。

【ChannelHandlerContext】:

保存 Channel 相关的所有上下文信息,同时关联一个 ChannelHandler 对象。

【ChannelPipline】:

保存 ChannelHandler 的 List,用于处理或拦截 Channel 的入站事件和出站操作。 ChannelPipeline 实现了一种高级形式的拦截过滤器模式,使用户可以完全控制事件的处理方式,以 及 Channel 中各个的 ChannelHandler 如何相互交互。
在 Netty 中每个 Channel 都有且仅有一个 ChannelPipeline 与之对应,它们的组成关系如下:

一个 Channel 包含了一个 ChannelPipeline,而 ChannelPipeline 中又维护了一个由 ChannelHandlerContext 组成的双向链表,并且每个 ChannelHandlerContext 中又关联着一个 ChannelHandler。

read事件(入站事件)和write事件(出站事件)在一个双向链表中,入站事件会从链表 head 往后传递到最 后一个入站的 handler,出站事件会从链表 tail 往前传递到最前一个出站的 handler,两种类型的 handler 互不干扰。

Netty通讯示例

        <dependency>
            <groupId>io.netty</groupId> <artifactId>netty-all</artifactId> <version>4.1.45.Final</version> </dependency>

服务端代码:

package com.hknetty.netty;

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelOption; import io.netty.channel.EventLoopGroup; import io.netty.channel.nio.NioEventLoopGroup; import io.netty.channel.socket.SocketChannel; import io.netty.channel.socket.nio.NioServerSocketChannel; public class NettyServer { public static void main(String[] args) throws Exception { //创建两个线程组bossGroup和workerGroup, 含有的子线程NioEventLoop的个数默认为cpu核数的两 // bossGroup只是处理连接请求 ,真正的和客户端业务处理,会交给workerGroup完成 EventLoopGroup bossGroup = new NioEventLoopGroup(1); EventLoopGroup workerGroup = new NioEventLoopGroup(); try { //创建服务器端的启动对象 ServerBootstrap bootstrap = new ServerBootstrap(); //使用链式编程来配置参数 //设置两个线程组 bootstrap.group(bossGroup, workerGroup) //使用NioServerSocketChannel作为服务器的通道 .channel(NioServerSocketChannel.class) // 初始化服务器连接队列大小,服务端处理客户端连接请求是顺序处理的,所以同一时间只能处理一 个客户端连接。 // 多个客户端同时来的时候,服务端将不能处理的客户端连接请求放在队列中等待处理 .option(ChannelOption.SO_BACKLOG, 1024) .childHandler(new ChannelInitializer<SocketChannel>() { //创建通道初始化对象,设置初始化参数 @Override protected void initChannel(SocketChannel ch) throws Exception { //对workerGroup的SocketChannel设置处理器codec ch.pipeline().addLast(new NettyServerHandler()); } }); System.out.println("netty server start。。"); //绑定一个端口并且同步, 生成了一个ChannelFuture异步对象,通过isDone()等方法可以判断异步事件的执行情况 //启动服务器(并绑定端口),bind是异步操作,sync方法是等待异步操作执行完毕 ChannelFuture cf = bootstrap.bind(9000).sync(); //给cf注册监听器,监听我们关心的事件 /*cf.addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (cf.isSuccess()) { System.out.println("监听端口9000成功"); } else { System.out.println("监听端口9000失败"); } } });*/ //对通道关闭进行监听,closeFuture是异步操作,监听通道关闭 // 通过sync方法同步等待通道关闭处理完毕,这里会阻塞等待通道关闭完成 cf.channel().closeFuture().sync(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } } }

服务端处理器代码:

package com.hknetty.netty;

import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter; import io.netty.util.CharsetUtil; /** * 自定义Handler需要继承netty规定好的某个HandlerAdapter(规范) */ public class NettyServerHandler extends ChannelInboundHandlerAdapter { /** * 读取客户端发送的数据 * * @param ctx 上下文对象, 含有通道channel,管道pipeline * @param msg 就是客户端发送的数据 * @throws Exception */ @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { System.out.println("服务器读取线程 " + Thread.currentThread().getName()); //Channel channel = ctx.channel(); //ChannelPipeline pipeline = ctx.pipeline(); //本质是一个双向链接, 出站入站 //将 msg 转成一个 ByteBuf,类似NIO 的 ByteBuffer ByteBuf buf = (ByteBuf) msg; System.out.println("客户端发送消息是:" + buf.toString(CharsetUtil.UTF_8)); } /** * 数据读取完毕处理方法 * * @param ctx * @throws Exception */ @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ByteBuf buf = Unpooled.copiedBuffer("HelloClient", CharsetUtil.UTF_8); ctx.writeAndFlush(buf); } /** * 处理异常, 一般是需要关闭通道 * * @param ctx * @param cause * @throws Exception */ @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { ctx.close(); } } 

客户端代码:

package com.hknetty.netty;

import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.EventLoopGroup; import io.netty.channel.nio.NioEventLoopGroup; import io.netty.channel.socket.SocketChannel; import io.netty.channel.socket.nio.NioSocketChannel; public class NettyClient { public static void main(String[] args) throws Exception { //客户端需要一个事件循环组 EventLoopGroup group = new NioEventLoopGroup(); try { //创建客户端启动对象 //注意客户端使用的不是 ServerBootstrap 而是Bootstrap Bootstrap bootstrap = new Bootstrap(); //设置相关参数 bootstrap.group(group) //设置线程组 .channel(NioSocketChannel.class) // 使用 NioSocketChannel 作为客户端的通道实现 .handler(new ChannelInitializer<SocketChannel>() { @Override protected void initChannel(SocketChannel channel) throws Exception { //加入处理器 channel.pipeline().addLast(new NettyClientHandler()); } }); System.out.println("netty client start"); //启动客户端去连接服务器端 ChannelFuture channelFuture = bootstrap.connect("127.0.0.1", 9000).sync(); //对关闭通道进行监听 channelFuture.channel().closeFuture().sync(); } finally { group.shutdownGracefully(); } } }

客户端处理器代码:

package com.hknetty.netty;

import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.ChannelInboundHandlerAdapter; import io.netty.util.CharsetUtil; public class NettyClientHandler extends ChannelInboundHandlerAdapter { /** * 当客户端连接服务器完成就会触发该方法 * * @param ctx * @throws Exception */ @Override public void channelActive(ChannelHandlerContext ctx) throws Exception { ByteBuf buf = Unpooled.copiedBuffer("HelloServer", CharsetUtil.UTF_8); ctx.writeAndFlush(buf); } /** * 当通道有读取事件时会触发,即服务端发送数据给客户端 * * @param ctx * @param msg * @throws Exception */ @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { ByteBuf buf = (ByteBuf) msg; System.out.println("收到服务端的消息:" + buf.toString(CharsetUtil.UTF_8)); System.out.println("服务端的地址: " + ctx.channel().remoteAddress()); } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); } } 

看完代码,我们发现Netty架的目标就是让你的业务逻辑从网络基础应用编码中分离出来,让你可以专 注业务的开发,而不需写一大堆类似NIO的网络处理操作。

ByteBuf详解

从结构上来说,ByteBuf 由一串字节数组构成。数组中每个字节用来存放信息。
ByteBuf 提供了两个索引,一个用于读取数据,一个用于写入数据。这两个索引通过在字节数 组中移动,来定位需要读或者写信息的位置。
当从 ByteBuf 读取时,它的 readerIndex(读索引)将会根据读取的字节数递增。 同样,当写 ByteBuf 时,它的 writerIndex 也会根据写入的字节数进行递增。

需要注意的是极限的情况是 readerIndex 刚好读到了 writerIndex 写入的地方。
如果 readerIndex 超过了 writerIndex 的时候,Netty 会抛出 IndexOutOf-BoundsException 异常。

package com.hknetty.netty;

import io.netty.buffer.ByteBuf;
import io.netty.buffer.Unpooled;
import io.netty.util.CharsetUtil;

public class NettyByteBuf { public static void main(String[] args) { // 创建byteBuf对象,该对象内部包含一个字节数组byte[10] // 通过readerindex和writerIndex和capacity,将buffer分成三个区域 // 已经读取的区域:[0,readerindex) // 可读取的区域:[readerindex,writerIndex) // 可写的区域: [writerIndex,capacity) ByteBuf byteBuf = Unpooled.buffer(10); System.out.println("byteBuf=" + byteBuf); for (int i = 0; i < 8; i++) { byteBuf.writeByte(i); } System.out.println("byteBuf=" + byteBuf); for (int i = 0; i < 5; i++) { System.out.println(byteBuf.getByte(i)); } System.out.println("byteBuf=" + byteBuf); for (int i = 0; i < 5; i++) { System.out.println(byteBuf.readByte()); } System.out.println("byteBuf=" + byteBuf); //用Unpooled工具类创建ByteBuf ByteBuf byteBuf2 = Unpooled.copiedBuffer("hello,zhuge!", CharsetUtil.UTF_8); //使用相关的方法 if (byteBuf2.hasArray()) { byte[] content = byteBuf2.array(); //将 content 转成字符串 System.out.println(new String(content, CharsetUtil.UTF_8)); System.out.println("byteBuf=" + byteBuf2); System.out.println(byteBuf2.readerIndex()); // 0 System.out.println(byteBuf2.writerIndex()); // 12 System.out.println(byteBuf2.capacity()); // 36 System.out.println(byteBuf2.getByte(0)); // 获取数组0这个位置的字符h的ascii码,h=104 41 int len = byteBuf2.readableBytes(); //可读的字节数 12 System.out.println("len=" + len); //使用for取出各个字节 for (int i = 0; i < len; i++) { System.out.println((char) byteBuf2.getByte(i)); } //范围读取 System.out.println(byteBuf2.getCharSequence(0, 6, CharsetUtil.UTF_8)); System.out.println(byteBuf2.getCharSequence(6, 6, CharsetUtil.UTF_8)); } } } 

 推荐:小程序未来10年发展趋势

猜你喜欢

转载自www.cnblogs.com/1994jinnan/p/12644011.html