Spark数据倾斜调优总结

Spark数据倾斜调优

  1. 你在工作当中遇到哪些数据倾斜的场景,你是如何处理的?
  2. 你在工作当中调过优吗?怎么处理的?效果怎么样?
  3. Spark Shuffle的发展过程

1. 数据倾斜原理和现象分析

  • (1)绝大多数task执行得都非常快,但个别task执行极慢

  • (2)绝大数task执行很快,有的task直接报OOM (Jvm Out Of Memory) 异常

数据倾斜如何定位原因 数据倾斜只会发生在shuffle过程中

主要是根据log日志信息去定位

  • 可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。
  • 出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。因为某个或者某些key对应的数据,远远的高于其他的key。

分析定位逻辑

  • 由于代码中有大量的shuffle操作,一个job会划分成很多个stage,首先要看的,就是数据倾斜发生在第几个stage中。
  • 可以在任务运行的过程中,观察任务的UI界面,可以观察到每一个stage中运行的task的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜。

某个task莫名其妙内存溢出的情况

这种情况下去定位出问题的代码就比较容易了。
我们建议直接看yarn-client模式下本地log的异常栈,或者是通过YARN查看yarn-cluster模式下的log中的异常栈。
一般来说,通过异常栈信息就可以定位到你的代码中哪一行发生了内存溢出。
然后在那行代码附近找找,一般也会有shuffle类算子,此时很可能就是这个算子导致了数据倾斜。
但是大家要注意的是,不能单纯靠偶然的内存溢出就判定发生了数据倾斜。
因为自己编写的代码的bug,以及偶然出现的数据异常,也可能会导致内存溢出。
因此还是要按照上面所讲的方法,通过Spark Web UI查看报错的那个stage的各个task的运行时间以及分配的数据量,才能确定是否是由于数据倾斜才导致了这次内存溢出。

查看导致数据倾斜的key的数据分布情况

知道了数据倾斜发生在哪里之后,通常需要分析一下那个执行了shuffle操作并且导致了数据倾斜的RDD/Hive表,查看一下其中key的分布情况。

数据倾斜原因总结

  • 1、数据本身问题

    • (1)key本身分布不均衡(包括大量的key为空)
    • (2)key的设置不合理
  • 2、spark使用不当的问题

数据倾斜的后果

(1)spark中的stage的执行时间受限于最后那个执行完成的task,

因此运行缓慢的任务会拖垮整个程序的运行速度(分布式程序运行的速度是由最慢的那个task决定的)。

(2)过多的数据在同一个task中运行,将会把executor内存撑爆,导致OOM内存溢出。

2. spark中数据倾斜的解决方案

2.1、方案一:使用Hive ETL预处理数据

方案适用场景:导致数据倾斜的是Hive表。

  • 如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。

方案实现思路:此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照**key进行聚合,**或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。

方案实现原理:这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,*所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。*我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。

方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。

方案缺点治标不治本,Hive ETL中还是会发生数据倾斜

方案实践经验:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。

将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。

项目实践经验:有一个交互式用户行为分析系统中使用了这种方案,该系统主要是允许用户通过Java Web系统提交数据分析统计任务,后端通过Java提交Spark作业进行数据分析统计。要求Spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些Spark作业的shuffle操作提前到了Hive ETL中,从而让Spark直接使用预处理的Hive中间表,尽可能地减少Spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升了6倍以上。

2.2、方案二:过滤少数导致倾斜的key

方案适用场景:如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。
  方案实现思路:如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key

比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。
  方案实现原理:将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。
  方案优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。
  方案缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。
  方案实践经验:在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。

2.3、方案三:提高shuffle操作的并行度(效果差)

方案适用场景:如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案。
   方案实现思路:在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小
   方案实现原理增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。具体原理如下图所示。
   方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。
   方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。
   方案实践经验:该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。

2.4、方案四:两阶段聚合(局部聚合+全局聚合)

方案适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。
  方案实现思路:这个方案的核心实现思路就是进行两阶段聚合

第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。

然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

方案实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。
  方案优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。
  方案缺点仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。


//案例
//  如果使用reduceByKey因为数据倾斜造成运行失败的问题。具体操作流程如下:
//    (1) 将原始的 key 转化为  随机值 + key  (随机值 = Random.nextInt)
//    (2) 对数据进行 reduceByKey(func)
//    (3) 将 key + 随机值转成 key
//    (4) 再对数据进行 reduceByKey(func)

object WordCountAggTest {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[2]").setAppName("WordCount")
    val sc = new SparkContext(conf)
    val array = Array("you you","you you","you you",
      "you you",
      "you you",
      "you you",
      "you you",
      "jump jump")
    val rdd = sc.parallelize(array,8)
    rdd.flatMap( line => line.split(" "))
      .map(word =>{
        val prefix = (new util.Random).nextInt(3)
        (prefix+"_"+word,1)
      }).reduceByKey(_+_)
       .map( wc =>{
         val newWord=wc._1.split("_")(1)
         val count=wc._2
         (newWord,count)
       }).reduceByKey(_+_)
      .foreach( wc =>{
        println("单词:"+wc._1 + " 次数:"+wc._2)
      })

  }
}
//注:我们这儿使用的是reduceByKey天然的有调优的效果,
//如果这儿是groupBykey那么发生数据倾斜的概率就会更大,更严重。

2.5、方案五:将reduce join转为map join

方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

方案实现思路:不使用join算子进行连接操作,而使用Broadcast变量map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。
  方案实现原理普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示。
  方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。
  方案缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。

object MapJoinTest {
 
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[2]").setAppName("WordCount")
    val sc = new SparkContext(conf)
    val lista=Array(
      Tuple2("001","令狐冲"),
      Tuple2("002","任盈盈")
    )
     //数据量小一点
    val listb=Array(
      Tuple2("001","一班"),
      Tuple2("002","二班")
    )
    val listaRDD = sc.parallelize(lista)
    val listbRDD = sc.parallelize(listb)
    //val result: RDD[(String, (String, String))] = listaRDD.join(listbRDD)
     //设置广播变量
    val listbBoradcast = sc.broadcast(listbRDD.collect())
    listaRDD.map(  tuple =>{
      val key = tuple._1
      val name = tuple._2
      val map = listbBoradcast.value.toMap
      val className = map.get(key)
      (key,(name,className))
    }).foreach( tuple =>{
      println("班级号"+tuple._1 + " 姓名:"+tuple._2._1 + " 班级名:"+tuple._2._2.get)
    })
  }
}

2.6、方案六:采样倾斜key并分拆join操作

方案适用场景:两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。

方案实现思路
  1、对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key
  2、然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。
  3、接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。
  4、再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。
  5、而另外两个普通的RDD就照常join即可。
  6、最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。

方案实现原理:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。
  方案优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。
  方案缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zUbY2k2i-1582500169332)(Spark调优-第二天.assets/随机前缀和扩容RDD.png)]

2.7、方案七:使用随机前缀和扩容RDD进行join

方案适用场景:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用这一种方案来解决问题了。
  方案实现思路
  1、该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。
  2、然后将该RDD的每条数据都打上一个n以内的随机前缀
  3、同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。
  4、最后将两个处理后的RDD进行join即可。

方案实现原理:将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。

方案优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。
  方案缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。
  方案实践经验:曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。

2.8、方案八:把上面的几种数据倾斜的解决方案综合的灵活运行

3. Shuffle调优

3.2 Shuffle的核心组件

碰到ShuffleDenpendency就进行stage的划分,

  • ShuffleMapStage: 为shuffle提供数据的中间stage,
  • ResultStage: 为一个action操作计算结果的stage。

3.4 Shuffle原理剖析

3.4.1 MapOutputTracker

解决的一个问题是resut task如何知道从哪个Executor去拉取Shuffle data

3.4.2 ShuffleWriter

(1)HashShuffleWriter

特点:根据Hash分区,分区数是m * n 个。

(2)SortShuffleWriter

特点:

a、文件数量为m

b、如果需要排序或者需要combine,那么每一个partition数据排序要自己实现。(SortShuffleWriter里的sort指的是对partition的分区号进行排序)

c、数据先放在内存,内存不够则写到磁盘中,最后再全部写到磁盘。

(3)BypassMergeSortShuffleWriter

这种模式同时具有HashShuffleWriter和SortShuffleter的特点。因为其实HashShufflerWriter的性能不错,但是如果task数太多的话,性能话下降,所以Spark在task数较少的时候自动使用了这种模式,一开始还是像HashShufflerWriter那种生成多个文件,但是最后会把多个文件合并成一个文件。然后下游来读取文件。默认map的分区需要小于spark.shuffle.sort.bypassMergeThreshold(默认是200),因为如何分区数太多,产生的小文件就会很多性能就会下降。

3.4.3 ShuffleReader
3.4.4 Spark Shuffle参数调优

1、spark.shuffle.file.buffer

  • 默认值:32k
  • 参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小
    • 将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
  • 调优建议:如果作业可用的内存资源较为充足的话,可以适当**增加这个参数的大小(**比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

2、spark.reducer.maxSizeInFlight

  • 默认值:48m
  • 参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
  • 调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。

3、spark.shuffle.io.maxRetries

  • 默认值:3
  • 参数说明:shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
  • 调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议**增加重试最大次数(**比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。

4、spark.shuffle.io.retryWait

  • 默认值:5s
  • 参数说明:具体解释同上,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
  • 调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。

5、spark.shuffle.memoryFraction(Spark1.6是这个参数,1.6以后参数变了,具体参考上一讲Spark内存模型知识)

  • 默认值:0.2
  • 参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
  • 调优建议:在资源参数调优中讲解过这个参数。如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。

7、spark.shuffle.manager

  • 默认值:sort
  • 参数说明:该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hashsorttungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。Spark1.6以后把hash方式给移除了,tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
  • 调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。

8、spark.shuffle.sort.bypassMergeThreshold

  • 默认值:200
  • 参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件
  • 调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。

ffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件

  • 调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
发布了77 篇原创文章 · 获赞 25 · 访问量 9204

猜你喜欢

转载自blog.csdn.net/TU_JCN/article/details/104471397