多线程数据共享带来的问题以及解决方案

小故事

  • 老王(操作系统)有一个功能强大的算盘(CPU),现在想把它租出去,赚一点外快
    在这里插入图片描述
  • 小男、小女(线程)来使用这个算盘来进行一些计算,并按照时间给老王支付费用
  • 但小男不能一天24小时使用算盘,他经常要小憩一会(sleep),又或是去吃饭上厕所(阻塞 io 操作),有
    时还需要一根烟,没烟时思路全无(wait)这些情况统称为(阻塞)
    在这里插入图片描述
  • 在这些时候,算盘没利用起来(不能收钱了),老王觉得有点不划算
  • 另外,小女也想用用算盘,如果总是小男占着算盘,让小女觉得不公平
  • 于是,老王灵机一动,想了个办法 [ 让他们每人用一会,轮流使用算盘 ]
  • 这样,当小男阻塞的时候,算盘可以分给小女使用,不会浪费,反之亦然
  • 最近执行的计算比较复杂,需要存储一些中间结果,而学生们的脑容量(工作内存)不够,所以老王申请了
    一个笔记本(主存)把一些中间结果先记在本上
  • 计算流程是这样的
    在这里插入图片描述
  • 但是由于分时系统,有一天还是发生了事故
  • 小男刚读取了初始值 0 做了个 +1 运算,还没来得及写回结果
  • 老王说 [ 小男,你的时间到了,该别人了,记住结果走吧 ],于是小男念叨着 [ 结果是1,结果是1…] 不甘心地到一边待着去了(上下文切换)
  • 老王说 [ 小女,该你了 ],小女看到了笔记本上还写着 0 做了一个 -1 运算,将结果 -1 写入笔记本
  • 这时小女的时间也用完了,老王又叫醒了小男:[小男,把你上次的题目算完吧],小男将他脑海中的结果 1 写
    入了笔记本
    在这里插入图片描述
  • 小男和小女都觉得自己没做错,但笔记本里的结果是 1 而不是 0

Java 的体现

两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?

static int counter = 0;
public static void main(String[] args) throws InterruptedException {
 Thread t1 = new Thread(() -> {
 for (int i = 0; i < 5000; i++) {
 counter++;
 }
 }, "t1");
 Thread t2 = new Thread(() -> {
 for (int i = 0; i < 5000; i++) {
 counter--;
 }
 }, "t2");
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 
}

问题分析

  • 以上的结果可能是正数、负数、零。为什么呢?因为 Java 中对静态变量的自增,自减并不是原子操作,要彻底理解,必须从字节码来进行分析
    例如对于 i++ 而言(i 为静态变量),实际会产生如下的 JVM 字节码指令:
getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
iadd // 自增
putstatic i // 将修改后的值存入静态变量i

而对应i-- 也是类似:

getstatic i // 获取静态变量i的值
iconst_1 // 准备常量1
isub // 自减
putstatic i // 将修改后的值存入静态变量i

而 Java 的内存模型如下,完成静态变量的自增,自减需要在主存和工作内存中进行数据交换:
在这里插入图片描述
如果是单线程以上 8 行代码是顺序执行(不会交错)没有问题:
在这里插入图片描述
但多线程下这 8 行代码可能交错运行:

  • 出现负数的情况:
    在这里插入图片描述
  • 出现正数的情况
    在这里插入图片描述

临界区 Critical Section

  • 一个程序运行多个线程本身是没有问题的
  • 问题出在多个线程访问共享资源
    • 多个线程读共享资源其实也没有问题
    • 在多个线程对共享资源读写操作时发生指令交错,就会出现问题
  • 一段代码块内如果存在对共享资源的多线程读写操作,称这段代码块为临界区

竞态条件 Race Condition

多个线程在临界区内执行,由于代码的执行序列不同而导致结果无法预测,称之为发生了竞态条件

synchronized 解决方案

为了避免临界区的竞态条件发生,有多种手段可以达到目的。

  • 阻塞式的解决方案:synchronized,Lock
  • 非阻塞式的解决方案:原子变量

本次使用阻塞式的解决方案:synchronized,来解决上述问题,即俗称的【对象锁】,它采用互斥的方式让同一

  • 时刻至多只有一个线程能持有【对象锁】,其它线程再想获取这个【对象锁】时就会阻塞住。这样就能保证拥有锁的线程可以安全的执行临界区内的代码,不用担心线程上下文切换。

注意

  • 虽然 java 中互斥和同步都可以采用 synchronized 关键字来完成,但它们还是有区别的:
    互斥是保证临界区的竞态条件发生,同一时刻只能有一个线程执行临界区代码
    同步是由于线程执行的先后、顺序不同、需要一个线程等待其它线程运行到某个点

解决方案

public class ThreadTest01 {
    static int counter = 0;
    static final Object room = new Object();

    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 5000; i++) {
                synchronized (room) {
                    counter++;
                    System.out.println(Thread.currentThread().getName()+"===> "+counter);
                }
            }
        }, "t1");
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 5000; i++) {
                synchronized (room) {
                    counter--;
                    System.out.println(Thread.currentThread().getName()+"===> "+counter);

                }
            }
        }, "t2");
        t1.start();
        t2.start();

    }
}

在这里插入图片描述

代码解释

  • synchronized(对象) 中的对象,可以想象为一个房间(room),有唯一入口(门)房间只能一次进入一人
    进行计算,线程 t1,t2 想象成两个人
  • 当线程 t1 执行到 synchronized(room) 时就好比 t1 进入了这个房间,并锁住了门拿走了钥匙,在门内执行
    count++ 代码
  • 这时候如果 t2 也运行到了 synchronized(room) 时,它发现门被锁住了,只能在门外等待,发生了上下文切
    换,阻塞住了
  • 这中间即使 t1 的 cpu 时间片不幸用完,被踢出了门外(不要错误理解为锁住了对象就能一直执行下去哦),
    这时门还是锁住的,t1 仍拿着钥匙,t2 线程还在阻塞状态进不来,只有下次轮到 t1 自己再次获得时间片时才
    能开门进入
  • 当 t1 执行完 synchronized{} 块内的代码,这时候才会从 obj 房间出来并解开门上的锁,唤醒 t2 线程把钥
    匙给他。t2 线程这时才可以进入 obj 房间,锁住了门拿上钥匙,执行它的 count-- 代码
发布了320 篇原创文章 · 获赞 152 · 访问量 64万+

猜你喜欢

转载自blog.csdn.net/hello_word2/article/details/104995895