RANSAC 算法 与 最小二乘法 区别

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011808673/article/details/83180451

RANSAC 算法

随机抽样一致算法(random sample consensus,RANSAC),采用迭代的方式从一组包含离群的被观测数据中估算出数学模型的参数。

算法简介:RANSAC算法的基本假设是样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(outliers,偏离正常范围很远、无法适应数学模型的数据),即数据集中含有噪声。这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产生的。同时RANSAC也假设,给定一组正确的数据,存在可以计算出符合这些数据的模型参数的方法。

基本思想描述:

①考虑一个最小抽样集的势为n的模型(n为初始化模型参数所需的最小样本数)和一个样本集P,集合P的样本数#(P)>n,从P中随机抽取包含n个样本的P的子集S初始化模型M;
②余集SC=P\S中与模型M的误差小于某一设定阈值t的样本集以及S构成S*。S*认为是内点集,它们构成S的一致集(Consensus Set);
③若#(S*)≥N,认为得到正确的模型参数,并利用集S*(内点inliers)采用最小二乘等方法重新计算新的模型M*;重新随机抽取新的S,重复以上过程。
④在完成一定的抽样次数后,若未找到一致集则算法失败,否则选取抽样后得到的最大一致集判断内外点,算法结束。
 

数据分两种:有效数据(inliers)和无效数据(outliers)。偏差不大的数据称为有效数据,偏差大的数据是无效数据。如果有效数据占大多数,无效数据只是少量时,我们可以通过最小二乘法或类似的方法来确定模型的参数和误差;如果无效数据很多(比如超过了50%的数据都是无效数据),最小二乘法就失效了,我们需要新的算法

RANSAC的基本假设:

1、”内群”数据可以通过几组模型的参数来叙述其分别,而“离群”数据则是不适合模型化的数据

2、数据会受噪声影响,噪声指的是离群,例如从极端的噪声或错误解释有关数据的测量或不正确的假设

3、RANSAC假定,给定一组(通常很小)的内群,存在一个程序,这个程序可以估算最佳解释或最适用于这一数据模型的参数

RANSAC的基本假设:

1、”内群”数据可以通过几组模型的参数来叙述其分别,而“离群”数据则是不适合模型化的数据

扫描二维码关注公众号,回复: 4054551 查看本文章

2、数据会受噪声影响,噪声指的是离群,例如从极端的噪声或错误解释有关数据的测量或不正确的假设

3、RANSAC假定,给定一组(通常很小)的内群,存在一个程序,这个程序可以估算最佳解释或最适用于这一数据模型的参数

概述:

1、在数据中随机选择几个点设定为内群

2、计算适合内群的模型

3、把其他刚才没有选到的点带入刚才建立的模型中,计算是否为内群

4、记下内群数量

5、重复以上步骤多次

6、比较哪次计算中内群数量最多,内群最多的那次所建的模型就是我们所要求的解

这里有几个问题:

1、一开始的时候我们要随机选择多少点

2、以及要重复多少次

优缺点:

RANSAC 算法的优点是能鲁棒的估计模型参数。例如,他能从包含大量局外点的数据集中估计出高精度的参数。

缺点是它计算参数的迭代次数没有上限,如果设置迭代次数的上限,得到的结果可能不是最优的结果,甚至可能得到错误的结果。

RANSAC只有一定的概率得到的可信的模型,概率与迭代次数成正比。另一个缺点是它要求设置跟问题相关的阈值,

RANSAC职能从特定的数据集中估计出一个模型,如果存在两个(或多个)模型,RANSAC不能找到别的模型
 

简介

 给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上。 

生产实践中的数据往往会有一定的偏差。例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值。通过实验,可以得到一组X与Y的测试值。虽然理论上两个未知数的方程只需要两组值即可确认,但由于系统误差的原因,任意取两点算出的a与b的值都不尽相同。我们希望的是,最后计算得出的理论模型与测试值的误差最小。大学的高等数学课程中,详细阐述了最小二乘法的思想。通过计算最小均方差关于参数a、b的偏导数为零时的值。事实上,在很多情况下,最小二乘法都是线性回归的代名词。 

遗憾的是,最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。例如下图,肉眼可以很轻易地看出一条直线(模式),但算法却找错了。 

RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证: 
 

  • 有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
  • 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
  • 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
  • 然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。
  • 最后,通过估计局内点与模型的错误率来评估模型。
  • 上述过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

 整个过程可参考下图: 

RANSAC算法经常用于计算机视觉,例如同时求解相关问题与估计立体摄像机的基础矩阵。 (透视/放射变换) 

猜你喜欢

转载自blog.csdn.net/u011808673/article/details/83180451