AA@数学归纳法

引言

  • 观察下列等式并猜测规律:
    • 1 = 1 2 1=1^2 1=12
    • 1 + 3 = 2 2 1+3=2^2 1+3=22
    • 1 + 3 + 5 = 3 2 1+3+5=3^2 1+3+5=32
    • 1 + 3 + 5 + 7 = 4 2 1+3+5+7=4^2 1+3+5+7=42
    • ⋯ \cdots
  • 容易猜测,对于任意正整数n,有 1 + 3 + 5 + ⋯ + ( 2 n − 1 ) = n 2 1+3+5+\cdots+(2n-1)=n^2 1+3+5++(2n1)=n2,即 ∑ i = 1 n 2 i − 1 = n 2 \sum_{i=1}^{n}2i-1=n^2 i=1n2i1=n2

归纳法

  • 由有限多个 个别的特殊事例得出的一般结论的推理方法,称为归纳法

  • 归纳法是人们认识客观世界的一个重要方法,大量的定理定律运用了归纳推理

  • 但是仅仅更具一系列有限特例得出结论不都是正确的

    • 一个错误归纳的例子:设数列A={ a n a_n an}, a n = n 2 + ∑ i = 1 4 ( n − 1 ) a_n=n^2+\sum_{i=1}^{4}(n-1) an=n2+i=14(n1)
    • 如果我们计算数列A的前4项发现: a 1 = 1 2 , a 2 = 2 2 , a 3 = 3 2 , a 4 = 4 2 a_1=1^2,a_2=2^2,a_3=3^2,a_4=4^2 a1=12,a2=22,a3=32,a4=42,很可能猜测 a n = n 2 a_n=n^2 an=n2对于任何 n n n成立
    • 而实际上 n = 5 n=5 n=5时就已经不满足假设了
  • 由归纳法得到的某些与自然数有关命题(记为命题 P ( n ) P(n) P(n)),常用以下方法来证明命题的正确性

    • 证明当 n = n 0 n=n_0 n=n0 P ( n ) P(n) P(n)成立
      • n 0 n_0 n0是初始值,例如 n 0 = 0 , n 0 = 1 n_0=0,n_0=1 n0=0,n0=1
    • 假设当 n = k n=k n=k, ( k ∈ N + , k ⩾ n 0 ) (k\in\mathbb{N^+},k\geqslant{n_0}) (kN+,kn0)时命题是正确的(作为推理条件或归纳假设条件,简称假设条件,在数学归纳法中扮演重要角色)
    • 利用假设条件证明当 n = k + 1 n=k+1 n=k+1时命题仍然正确
    • 顺利完成上述步骤后,就可以断定命题对于从初始值 n 0 n_0 n0开始的所有自然数都正确
  • 数学归纳法证明的思路是使用递推的方式进行,即从第一项(初始值 n 0 n_0 n0)开始,前一项成立推出后一项也成立,来表明n取任何值时命题都成立

等式左右边的引用

  • 通常用LHS表示等式左边,RHS表示等式右边,例如 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x), L H S = f ( x ) LHS=f(x) LHS=f(x), R H S = g ( x ) RHS=g(x) RHS=g(x)

  • LHS stands for “left-hand side” and RHS stands for “right-hand side”. These terms are commonly used in mathematical equations and expressions to refer to the parts of the equation or expression on the left-hand side and right-hand side, respectively.

  • For example, in the equation 2x + 5 = 9, the left-hand side (LHS) is 2x + 5 and the right-hand side (RHS) is 9. Similarly, in the expression y = 3x + 2, the left-hand side (LHS) is y and the right-hand side (RHS) is 3x + 2.

  • 借用引言中的例子演示数学归纳法证明某个自然数有关的命题
  • 题:用数学归纳法证明: ∀ n ∈ N + \forall{n}\in{\mathbb{N}^+} nN+, ∑ i = 1 n 2 i − 1 = n 2 \sum_{i=1}^{n}2i-1=n^2 i=1n2i1=n2
  • 证明:
    • n = 1 n=1 n=1时, L H S = R H S = 1 LHS=RHS=1 LHS=RHS=1
    • 假设 n = k n=k n=k,命题正确,即有 ∑ i = 1 k 2 i − 1 = k 2 \sum_{i=1}^{k}2i-1=k^2 i=1k2i1=k2
      • 在该假设下, n = k + 1 n=k+1 n=k+1时:
        • L H S = ∑ i = 1 k + 1 ( 2 i − 1 ) LHS=\sum_{i=1}^{k+1}(2i-1) LHS=i=1k+1(2i1)
          • = ∑ i = 1 k + 1 2 i − ∑ i = 1 k + 1 1 =\sum_{i=1}^{k+1}2i-\sum_{i=1}^{k+1}1 =i=1k+12ii=1k+11
          • = 2 ∑ i = 1 k + 1 i − ( k + 1 ) =2\sum_{i=1}^{k+1}i-(k+1) =2i=1k+1i(k+1)
          • = 2 × 1 2 ( k + 1 + 1 ) ( k + 1 ) − ( k + 1 ) =2\times{\frac{1}{2}(k+1+1)(k+1)}-(k+1) =2×21(k+1+1)(k+1)(k+1)
          • ( k + 1 ) 2 (k+1)^2 (k+1)2
        • R H S = ( k + 1 ) 2 RHS=(k+1)^2 RHS=(k+1)2
        • L H S = R H S {LHS=RHS} LHS=RHS
    • 因此,等式对于任何正整数 n n n都成立假设的命题是成立的
    • Note:
      • 事实上,计算 L H S LHS LHS在数学归纳法中更加合适的做法是将LHS展开(变形)为包含 n = k n=k n=k时的假设条件,然后带入假设条件来推进 L H S LHS LHS的计算
      • L H S = ∑ i = 1 k + 1 ( 2 i − 1 ) = ∑ i = 1 k ( 2 i − 1 ) + ( 2 ( k + 1 ) − 1 ) = ∑ i = 1 k ( 2 i − 1 ) + 2 k + 1 LHS=\sum_{i=1}^{k+1}(2i-1)=\sum_{i=1}^{k}(2i-1)+(2(k+1)-1)=\sum_{i=1}^{k}(2i-1)+2k+1 LHS=i=1k+1(2i1)=i=1k(2i1)+(2(k+1)1)=i=1k(2i1)+2k+1,代换第一项 ∑ i = 1 k 2 i − 1 = k 2 \sum_{i=1}^{k}2i-1=k^2 i=1k2i1=k2
        • = k 2 + 2 k + 1 =k^2+2k+1 =k2+2k+1
        • = ( k + 1 ) 2 =(k+1)^2 =(k+1)2

  • 用数学归纳法证明等式: ∑ i = 1 n i 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) \sum_{i=1}^{n}i^2=\frac{1}{6}n(n+1)(2n+1) i=1ni2=61n(n+1)(2n+1)
    • n = 1 n=1 n=1时,LHS=RHS=1
    • n = k n=k n=k时,等式成立,即成立 ∑ i = 1 k i 2 = 1 6 k ( k + 1 ) ( 2 k + 1 ) \sum_{i=1}^{k}i^2=\frac{1}{6}k(k+1)(2k+1) i=1ki2=61k(k+1)(2k+1)
      • n = k + 1 n=k+1 n=k+1
        • L H S = ∑ i = 1 k + 1 i 2 = ∑ i = 1 k i 2 + ( k + 1 ) 2 LHS=\sum_{i=1}^{k+1}i^2=\sum_{i=1}^k{i^2}+(k+1)^2 LHS=i=1k+1i2=i=1ki2+(k+1)2
          • 带入假设条件, L H S = 1 6 k ( k + 1 ) ( 2 k + 1 ) + ( k + 1 ) 2 LHS=\frac{1}{6}k(k+1)(2k+1)+(k+1)^2 LHS=61k(k+1)(2k+1)+(k+1)2
          • = 1 6 [ k ( k + 1 ) ( 2 k + 1 ) + 6 ( k + 1 ) 2 ] =\frac{1}{6}[k(k+1)(2k+1)+6(k+1)^2] =61[k(k+1)(2k+1)+6(k+1)2]
          • = 1 6 [ ( k + 1 ) ( k ( 2 k + 1 ) + 6 ( k + 1 ) ) ] =\frac{1}{6}[(k+1)(k(2k+1)+6(k+1))] =61[(k+1)(k(2k+1)+6(k+1))]
          • = 1 6 [ ( k + 1 ) ( 2 k 2 + 7 k + 6 ) ] =\frac{1}{6}[(k+1)(2k^2+7k+6)] =61[(k+1)(2k2+7k+6)]
          • = 1 6 [ ( k + 1 ) ( k + 2 ) ( 2 k + 3 ) ] =\frac{1}{6}[(k+1)(k+2)(2k+3)] =61[(k+1)(k+2)(2k+3)]
          • = 1 6 ( k + 1 ) ( ( k + 1 ) + 1 ) ( 2 ( k + 1 ) + 1 ) =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1) =61(k+1)((k+1)+1)(2(k+1)+1)
        • R H S = 1 6 ( k + 1 ) ( ( k + 1 ) + 1 ) ( 2 ( k + 1 ) + 1 ) RHS=\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1) RHS=61(k+1)((k+1)+1)(2(k+1)+1)
        • LHS=RHS
      • 因此,当 n = k + 1 n=k+1 n=k+1时,等式也成立
      • 由数学归纳法,命题对于一切正整数 n n n都成立

  • ( ∑ i = 1 n a i ) 2 = ∑ i = 1 n a i 2 + 2 S n (\sum_{i=1}^{n}a_i)^2=\sum_{i=1}^{n}a_{i}^2+2S_n (i=1nai)2=i=1nai2+2Sn

    • S n = ∑ i , j ∈ D , i ≠ j a i a j S_n=\displaystyle\sum_{i,j\in{\mathbb{D}},i\neq{j}}a_{i}a_{j} Sn=i,jD,i=jaiaj
      • = ∑ i = 1 n − 1 a i ( ∑ j = i + 1 n a j ) =\sum_{i=1}^{n-1}a_i(\sum_{j=i+1}^{n}a_j) =i=1n1ai(j=i+1naj)
    • D = { 1 , 2 , ⋯   , n } D=\{1,2,\cdots,n\} D={ 1,2,,n}
  • 证明: n = 2 n=2 n=2时, L H S = ( a 1 + a 2 ) 2 = a 1 2 + a 2 2 + 2 a 1 a 2 LHS=(a_1+a_2)^2=a_1^2+a_2^2+2a_1a_2 LHS=(a1+a2)2=a12+a22+2a1a2,显然 L H S = R H S LHS=RHS LHS=RHS

  • n = k n=k n=k时等式成立,即:

    • ( ∑ i = 1 k a i ) 2 = ∑ i = 1 k a i 2 + 2 S k (\sum_{i=1}^{k}a_i)^2=\sum_{i=1}^{k}a_{i}^2+2S_k (i=1kai)2=i=1kai2+2Sk

    • n = k + 1 n=k+1 n=k+1

      • L H S = ( ∑ i = 1 k + 1 a i ) 2 = ( ( ∑ i = 1 k a i ) + a k + 1 ) 2 LHS=(\sum_{i=1}^{k+1}a_i)^2=((\sum_{i=1}^{k}a_i)+a_{k+1})^2 LHS=(i=1k+1ai)2=((i=1kai)+ak+1)2

        • = ( ∑ i = 1 k a i ) 2 + a k + 1 2 + 2 ( ∑ i = 1 k a i ) a k + 1 =(\sum_{i=1}^{k}a_i)^2+a_{k+1}^2+2(\sum_{i=1}^{k}a_i)a_{k+1} =(i=1kai)2+ak+12+2(i=1kai)ak+1
        • = ∑ i = 1 k a i 2 + 2 S k + a k + 1 2 + 2 ( ∑ i = 1 k a i ) a k + 1 =\sum_{i=1}^{k}a_{i}^2+2S_k+a_{k+1}^2+2(\sum_{i=1}^{k}a_i)a_{k+1} =i=1kai2+2Sk+ak+12+2(i=1kai)ak+1
        • = ∑ i = 1 k + 1 a i 2 + 2 S k + 2 ( ∑ i = 1 k a i ) a k + 1 =\sum_{i=1}^{k+1}a_{i}^2+2S_k+2(\sum_{i=1}^{k}a_i)a_{k+1} =i=1k+1ai2+2Sk+2(i=1kai)ak+1
        • = ∑ i = 1 k + 1 a i 2 + 2 ( S k + a k + 1 ∑ i = 1 k a i ) =\sum_{i=1}^{k+1}a_{i}^2+2(S_k+a_{k+1}\sum_{i=1}^{k}a_i) =i=1k+1ai2+2(Sk+ak+1i=1kai)
        • = ∑ i = 1 k + 1 a i 2 + 2 S k + 1 =\sum_{i=1}^{k+1}a_{i}^2+2S_{k+1} =i=1k+1ai2+2Sk+1
        • 该推导用到了 S k + 1 = S k + a k + 1 ∑ i = 1 k a i S_{k+1}=S_k+a_{k+1}\sum_{i=1}^{k}a_i Sk+1=Sk+ak+1i=1kai
          • 该等式见Note部分说明
      • R H S = ∑ i = 1 k + 1 a i 2 + 2 S k + 1 RHS=\sum_{i=1}^{k+1}a_{i}^2+2S_{k+1} RHS=i=1k+1ai2+2Sk+1

      • 所以 L H S = R H S LHS=RHS LHS=RHS n = k + 1 n=k+1 n=k+1时也成立

      • 所以命题对于任意 n ⩾ 2 n\geqslant{2} n2的正整数n成立

    • Note:

      • 方式1:

        • S k = ∑ i = 1 k − 1 a i ∑ j = i + 1 k a j S k + 1 = ∑ i = 1 k a i ( ∑ j = i + 1 k + 1 a j ) = ∑ i = 1 k − 1 a i ∑ j = i + 1 k + 1 a j + a k ∑ j = k + 1 k + 1 a j = ∑ i = 1 k − 1 a i ( ( ∑ j = i + 1 k a j ) + a k + 1 ) + a k ∑ j = k + 1 k + 1 a j = ∑ i = 1 k − 1 a i ∑ j = i + 1 k a j + a k + 1 ∑ i = 1 k − 1 a i + a k a k + 1 = S k + a k + 1 ∑ i = 1 k a i \begin{aligned} S_k=&\sum_{i=1}^{k-1}a_{i}\sum_{j=i+1}^{k}a_{j}\\\\ S_{k+1} =&\sum_{i=1}^{k}a_i(\sum_{j=i+1}^{k+1}a_j)\\ =&\sum_{i=1}^{k-1}a_{i}\sum_{j=i+1}^{k+1}a_{j} +a_k\sum_{j=k+1}^{k+1}a_{j}\\ =&\sum_{i=1}^{k-1}a_{i}((\sum_{j=i+1}^{k}a_{j})+a_{k+1}) +a_k\sum_{j=k+1}^{k+1}a_{j}\\ =&\sum_{i=1}^{k-1}a_{i}\sum_{j=i+1}^{k}a_{j} +a_{k+1}\sum_{i=1}^{k-1}a_{i}+a_ka_{k+1}\\ =&S_{k}+a_{k+1}\sum_{i=1}^ {k}a_{i} \end{aligned} Sk=Sk+1=====i=1k1aij=i+1kaji=1kai(j=i+1k+1aj)i=1k1aij=i+1k+1aj+akj=k+1k+1aji=1k1ai((j=i+1kaj)+ak+1)+akj=k+1k+1aji=1k1aij=i+1kaj+ak+1i=1k1ai+akak+1Sk+ak+1i=1kai
      • 方式2:

        • 从两两组合的角度看(排列组合),源序列 A 1 = { a 1 , a 2 , ⋯   , a k } A_1=\{a_{1},a_2,\cdots,a_k\} A1={ a1,a2,,ak}增加一个元素得到序列 A 2 = { a 1 , a 2 , ⋯   , a k , a k + 1 } A_2=\{a_1,a_2,\cdots,a_k,a_{k+1}\} A2={ a1,a2,,ak,ak+1}

        • D 1 = { 1 , 2 , ⋯   , k } D_1=\{1,2,\cdots,k\} D1={ 1,2,,k}, D 2 = D 1 ∪ { k + 1 } D_2=D_1\cup{\{k+1\}} D2=D1{ k+1}

        • A 1 A_1 A1中元素两两组合构成的集合 T 1 = { a i a j ∣ i ≠ j , i , j ∈ D 1 } T_1=\{a_{i}a_{j}|i\neq{j},i,j\in{D_1}\} T1={ aiaji=j,i,jD1},其中共有 m 1 = ( k 2 ) = k ( k − 1 ) 2 m_1=\binom{k}{2}=\frac{k(k-1)}{2} m1=(2k)=2k(k1)

          • 另一种计算方式 m 1 = ∑ i = 1 k − 1 i m_1=\sum_{i=1}^{k-1}i m1=i=1k1i也是正确的
        • 类似的, A 2 A_2 A2中元素两两组合构成的集合 T 2 = { a i a j ∣ i ≠ j , i , j ∈ D 2 } T_2=\{a_ia_j|i\neq{j},i,j\in{D_2}\} T2={ aiaji=j,i,jD2},其中共有 m 2 = ( k + 1 2 ) = ( k + 1 ) k 2 m_2=\binom{k+1}{2}=\frac{(k+1)k}{2} m2=(2k+1)=2(k+1)k个元素

        • T 1 → T 2 T_1\to{T_2} T1T2而增加的元素均是 a i a k + 1 , i = 1 , 2 , ⋯   , k a_{i}a_{k+1},i=1,2,\cdots,k aiak+1,i=1,2,,k,这些元素的和为 Δ = a k + 1 ∑ i = 1 k \Delta=a_{k+1}\sum_{i=1}^{k} Δ=ak+1i=1k

其他形式示例

猜你喜欢

转载自blog.csdn.net/xuchaoxin1375/article/details/131631636