AVLツリー(平衡二分木)の詳細解説|C/C++実装

自然

バランス ファクターの概念は、BST ツリーに基づいて導入されます。これには、ノードの左右のサブツリーの高さの差が 1 を超えないことが必要です。

ローテーションが必要な 4 つの状況

  • 左の子 左の子の木が高すぎる: 右利き
  • 右の子 右の子の木が高すぎる: 左利き
  • 左の子の右のサブツリーが高すぎます: 最初に左の子を左に回転させてから、現在のノードを右に回転させます (左のバランス)
  • 右の子の左のサブツリーが高すぎます: 最初に右の子に右折し、次に現在のノードに左折します (右のバランス)
#include <iostream>
#include <cmath>
#include <algorithm>

using namespace std;

// 定义节点类型
template<typename T>
struct Node {
    Node(T data = T()) : data_(data), left_(nullptr), right_(nullptr), height_(1) {}
    T data_;
    Node* left_;
    Node* right_;
    int height_; // 记录节点的高度
};

// AVL树
template<typename T>
class AVLTree {
public:
    AVLTree() : root_(nullptr) {}
    // 插入
    void insert(const T& val) {
        root_ = insert(root_,val);
    }
    // 删除
    void remove(const T& val) {
        root_ = remove(root_,val);
    }
private:
    Node<T>* root_; // 根节点
    // 返回节点的高度
    int height(Node<T> *node) {
        return node == nullptr ? 0 : node->height_;
    }
    // 右旋
    Node<T>* rightRotate(Node<T>* node);
    // 左旋
    Node<T>* leftRotate(Node<T>* node);
    // 左平衡
    Node<T>* leftBalance(Node<T>* node);
    // 右平衡
    Node<T>* rightBalance(Node<T>* node);
    // 插入
    Node<T>* insert(Node<T>* node, const T& val);
    // 删除
    Node<T>* remove(Node<T>* node, const T& val);
};

// 右旋
template<typename T>
Node<T>* AVLTree<T>::rightRotate(Node<T>* node) {
    // 节点旋转
    Node<T>* child = node->left_;
    node->left_ = child->right_;
    child->right_ = node;
    // 高度更新
    node->height_ = max(height(node->left_), height(node->right_)) + 1;
    child->height_ = max(height(child->left_), height(child->right_)) + 1;
    // 返回旋转后的子树的新根节点
    return child;
}

// 左旋
template<typename T>
Node<T>* AVLTree<T>::leftRotate(Node<T>* node) {
    // 节点旋转
    Node<T> *child = node->left_;
    node->right_ = child->left_;
    child->left_ = node;
    // 高度更新
    node->height_ = max(height(node->left_), height(node->right_)) + 1;
    child->height_ = max(height(child->left_), height(child->right_)) + 1;
    // 返回旋转后的子树的新根节点
    return child;
}

// 左平衡 先对node的左子树左旋,再对node右旋
template<typename T>
Node<T>* AVLTree<T>::leftBalance(Node<T> *node) {
    node->left_ = leftRotate(node->left_);
    return rightRotate(node);
}

// 右平衡 先对node的右子树右旋,再对node左旋
template<typename T>
Node<T>* AVLTree<T>::rightBalance(Node<T> *node) {
    node->right_ = rightRotate(node->right_);
    return leftRotate(node);
}

// 插入
template<typename T>
Node<T>* AVLTree<T>::insert(Node<T> *node, const T &val) {
    // 递归结束 找到插入的位置
    if (node == nullptr) return new Node<T>(val);

    if (node->data_ > val) {
        node->left_ = insert(node->left_,val);
        // 判断是否失衡
        if (height(node->left_) - height(node->right_) > 1) {
            if (height(node->left_->left_) >= height(node->left_->right_)) {
                // 左孩子的左子树太高
                node = rightRotate(node);
            } else {
                // 左孩子的右子树太高
                node = leftBalance(node);
            }
        }
    } else if (node->data_ < val) {
        node->right_ = insert(node->right_,val);
        if (height(node->right_) - height(node->left_) > 1) {
            if (height(node->right_->right_) >= height(node->right_->left_)) {
                node = leftRotate(node);
            } else {
                node = rightBalance(node);
            }
        }
    } else {
        // 找到相同节点 不需要向下递归 直接向上回溯
    }

    // 因为子树添加了新的节点 所以在递归的时候需要更新节点高度
    node->height_ = max(height(node->left_), height(node->right_)) + 1;

    return node;
}

// 删除操作 从叶子节点中选出一个节点 进行替换
template<typename T>
Node<T>* AVLTree<T>::remove(Node<T> *node, const T &val) {
    if (node == nullptr) {
        return nullptr;
    }

    if (node->data_ > val) {
        node->left_ = remove(node->left_,val);
        if (height(node->right_) - height(node->left_) > 1) {
            if (height(node->right_->right_) >= height(node->right_->left_)) {
                node = leftRotate(node);
            } else {
                node = rightBalance(node);
            }
        }
    } else if (node->data_ < val) {
        node->right_ = remove(node->right_,val);
        if (height(node->left_) - height(node->right_) > 1) {
            if (height(node->left_->left_) >= height(node->left_->right_)) {
                node = rightRotate(node);
            } else {
                node = leftBalance(node);
            }
        }
    } else {
        // 找到节点
        // 如果有两个孩子
        if (node->left_ != nullptr && node->right_ != nullptr) {
            // 谁高删谁的节点
            if (height(node->left_) >= height(node->right_)) {
                Node<T>* pre = node->left_;
                while (pre->right_ != nullptr) {
                    pre = pre->right_;
                }
                node->data_ = pre->data_;
                node->left_ = remove(node->left_,pre->data_);
            } else {
                Node<T>* pre = node->right_;
                while (pre->left_ != nullptr) {
                    pre = pre->left_;
                }
                node->data_ = pre->data_;
                node->right_ = remove(node->right_,pre->data_);
            }
        } else {
            // 如果只有一个孩子
            if (node->left_ != nullptr) {
                Node<T>* left = node->left_;
                delete node;
                return left;
            } else if (node->right_ != nullptr) {
                Node<T>* right = node->right_;
                delete node;
                return right;
            } else {
                delete node;
                return nullptr;
            }
        }
    }

    // 更新节点高度
    node->height_ = max(height(node->left_), height(node->right_)) + 1;
    return node;
}

パフォーマンス分析

  • ノードを AVL ツリーに挿入するには、バランスを復元するために最大 2 回のローテーションが必要です

ノードを挿入すると、ノードが配置されているサブツリーの高さが 1 増加しますが、回転すると、新しいノードが配置されているサブツリーが 1 減少するため、AVL ツリーにノードを挿入するには、最大で 2 回の回転しか必要ありません。

  • ノードの AVL ツリーの削除には、バランスを復元するために最大で O(logN) ローテーションが必要です

ノードを削除すると、ノードが配置されているサブツリーが 1 つ減少し、回転するとノードが配置されているサブツリーが 1 つ減少するため、最悪の場合、O(logN) 回のローテーションが必要になります。

[外部リンクの画像転送に失敗しました。ソース サイトには盗難防止リンク メカニズムがある可能性があります。画像を保存して直接アップロードすることをお勧めします (img-K38jGI6Q-1678955045720) (C:\Users\gnezd\AppData\Roaming\Typora \typora-user-images\ image-20230316155305771.png)]

ノード X を削除すると、R4 のバランス係数は -2 になり、R4 は左手系になります; R3 のバランス係数は 2 になり、R3 は右手系になります; R2 のバランス係数は -2 になり、R2 は左手系になります- R1 のバランス係数は 2 になり、R1 は右利き

削除するノードのルート ノードから親ノードへのバランス係数が -1 と +1 を交互に繰り返す場合、ノードが削除されてローテーションがトリガーされると、logn ローテーションが必要になります。

おすすめ

転載: blog.csdn.net/blll0/article/details/129590539