Usando la red neuronal VGG16 para el reconocimiento de flores

Efecto del trabajo: Identificar el tipo de imagen de flores dada.

Software principal: pycharm

Tecnología: Red neuronal VGG

Funciones: Implementar el reconocimiento de flores en la web.

Entorno operativo: antorcha=1.12.1+cu116, torchvision=0.13.1+cu116

paso:

Descargue el conjunto de datos: cree una nueva carpeta "flower_data" en la carpeta data_set, haga clic en el enlace para descargar el conjunto de datos de clasificación de flores  https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz y descomprima el conjunto de datos en Debajo de la carpeta flower_data, ejecute el script "split_data.py" para dividir automáticamente el conjunto de datos en un conjunto de entrenamiento y un conjunto de validación val.

import os
from shutil import copy, rmtree
import random


def mk_file(file_path: str):
    if os.path.exists(file_path):
        # 如果文件夹存在,则先删除原文件夹在重新创建
        rmtree(file_path)
    os.makedirs(file_path)


def main():
    # 保证随机可复现
    random.seed(0)

    # 将数据集中10%的数据划分到验证集中
    split_rate = 0.1

    # 指向你解压后的flower_photos文件夹
    cwd = os.getcwd()
    data_root = os.path.join(cwd, "flower_data")
    origin_flower_path = os.path.join(data_root, "flower_photos")
    assert os.path.exists(origin_flower_path), "path '{}' does not exist.".format(origin_flower_path)

    flower_class = [cla for cla in os.listdir(origin_flower_path)
                    if os.path.isdir(os.path.join(origin_flower_path, cla))]

    # 建立保存训练集的文件夹
    train_root = os.path.join(data_root, "train")
    mk_file(train_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(train_root, cla))

    # 建立保存验证集的文件夹
    val_root = os.path.join(data_root, "val")
    mk_file(val_root)
    for cla in flower_class:
        # 建立每个类别对应的文件夹
        mk_file(os.path.join(val_root, cla))

    for cla in flower_class:
        cla_path = os.path.join(origin_flower_path, cla)
        images = os.listdir(cla_path)
        num = len(images)
        # 随机采样验证集的索引
        eval_index = random.sample(images, k=int(num*split_rate))
        for index, image in enumerate(images):
            if image in eval_index:
                # 将分配至验证集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(val_root, cla)
                copy(image_path, new_path)
            else:
                # 将分配至训练集中的文件复制到相应目录
                image_path = os.path.join(cla_path, image)
                new_path = os.path.join(train_root, cla)
                copy(image_path, new_path)
            print("\r[{}] processing [{}/{}]".format(cla, index+1, num), end="")  # processing bar
        print()

    print("processing done!")


if __name__ == '__main__':
    main()
  1. construir modelo modelo

Establecida en base al modelo vgg16 e implementada en el archivo model.py, la función make_features determina el orden y los parámetros de la capa convolucional y la capa de agrupación (tamaño del núcleo de convolución, tamaño del paso, etc.), el clasificador determina los parámetros de la capa completamente conectada. clasificación e inicializa la suma de pesos. Propagación hacia adelante.

import torch.nn as nn
import torch

# official pretrain weights
model_urls = {
    'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
    'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
    'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
    'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'
}


class VGG(nn.Module):
    def __init__(self, features, num_classes=1000, init_weights=False):
        #  net = vgg(model_name=model_name, num_classes=5, init_weights=True)
        super(VGG, self).__init__()
        self.features = features  # 由make_features函数确定,处理特征值的方法
        #  features确定卷积和池化的操作顺序,.classifier 确定全连接分类的参数
        self.classifier = nn.Sequential(
            # 卷积后的结果是512x7x7,输入512*7*7xbatch_size,输出4096xbatch_size
            # 一个有序的容器,神经网络模块将按照在传入构造器的顺序依次被添加到计算图中执行,
            # 同时以神经网络模块为元素的有序字典也可以作为传入参数。
            nn.Linear(512 * 7 * 7, 4096),  # 全连接层fc,矩阵展平
            nn.ReLU(True),
            nn.Dropout(p=0.5),  # 防止过拟合
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, num_classes)
        )
        if init_weights:
            self._initialize_weights()

    # 前向传播
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.features(x)  # 卷积提取特征
        # N x 512 x 7 x 7
        x = torch.flatten(x, start_dim=1)  # 展平
        # N x 512*7*7
        x = self.classifier(x)  # 全连接分类
        return x

    def _initialize_weights(self):  # 初始化各层权重
        for m in self.modules():
            if isinstance(m, nn.Conv2d):  # 判断是否相同
                # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.xavier_uniform_(m.weight)  # 初始化权重
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                # nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


# 确定每一层是卷积层还是池化,及其参数(卷积核大小,步长等)
def make_features(cfg: list):
    layers = []
    in_channels = 3
    for v in cfg:  # 遍历层表
        if v == "M":
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            # nn.Conv2d(in_channels=3,out_channels=64,kernel_size=4,stride=2,padding=1)
            layers += [conv2d, nn.ReLU(True)]
            in_channels = v
    return nn.Sequential(*layers)


cfgs = {  # M代表池化,数字代表卷积出的个数
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


# 确定运行的是哪一个版本的vgg
def vgg(model_name="vgg16", **kwargs):
    assert model_name in cfgs, "Warning: model number {} not in cfgs dict!".format(model_name)
    cfg = cfgs[model_name]  # 确定运行的是哪一个版本的vgg

    model = VGG(make_features(cfg), **kwargs)
    # cfg经过make_features后,已经确定每一层的分布
    return model
  1. capacitación

Procese las fotografías del conjunto de datos para obtener vectores, escriba los nombres de los tipos de flores en el archivo class_indices.json, determine el tamaño del lote = 8, use el modelo para el entrenamiento, propague hacia atrás para calcular el gradiente, actualice continuamente los pesos y finalmente calcule la función de pérdida. y guarde los pesos del modelo de pérdida mínima en el archivo vgg16Net.pth.

import os
import sys
import json

import torch
import torch.nn as nn
from torchvision import transforms, datasets
# torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
# torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
# torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
import torch.optim as optim
from tqdm import tqdm

from model import vgg


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
    # 定义一个把数据集的照片处理得到向量的操作
    data_transform = {  # transforms.Compose这个类的主要作用是串联多个图片变换的操作。
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     # transforms.RandomResizedCrop(224)将给定图像随机裁剪为不同的大小和宽高比,
                                     # 然后缩放所裁剪得到的图像为制定的大小;(即先随机采集,然后对裁剪得到的图像缩放为同一大小),默认scale=(0.08, 1.0)

                                     transforms.RandomHorizontalFlip(),
                                     # transforms.RandomHorizontalFlip  随机水平翻转
                                     transforms.ToTensor(),  # transforms.ToTensor() 将给定图像转为Tensor
                                     # transforms.Normalize() 归一化处理
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    # 把数据集的照片处理得到向量
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    # datasets.ImageFolder
    # root:图片存储的根目录,即各类别文件夹所在目录的上一级目录,在下面的例子中是’./ data / train /’。
    # transform:对图片进行预处理的操作(函数),原始图片作为输入,返回一个转换后的图片。
    # target_transform:对图片类别进行预处理的操作,输入为
    # target,输出对其的转换。如果不传该参数,即对target不做任何转换,返回的顺序索引0, 1, 2…
    # loader:表示数据集加载方式,通常默认加载方式即可。
    # 生成的dataset 有以下成员变量:
    # self.classes:用一个list保存类别名称
    # self.class_to_idx:类别对应的索引,与不做任何转换返回的 对应
    # self.imgs:保存(img - path,class ) tuple的 list,
    train_num = len(train_dataset)

    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())  # 保存花种类名称
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)  # 花种类名称写入文件
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    batch_size = 8  # 每批次训练8个
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    # num_workers 用多少个子进程加载数据
    print('Using {} dataloader workers every process'.format(nw))

    # torch.utils.data.DataLoader
    # 该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor,
    # 后续只需要再包装成Variable即可作为模型的输入,因此该接口有点承上启下的作用,比较重要
    #
    # 参数:

    # dataset(Dataset) – 加载数据的数据集。
    # batch_size(int, optional) – 每个batch加载多少个样本(默认: 1)。
    # shuffle(bool, optional) – 设置为True时会在每个epoch重新打乱数据(默认: False).
    # sampler(Sampler, optional) – 定义从数据集中提取样本的策略,即生成index的方式,可以顺序也可以乱序
    # num_workers(int, optional) – 用多少个子进程加载数据。0表示数据将在主进程中加载(默认: 0)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)
    # 处理验证集
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)
    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))

    # test_data_iter = iter(validate_loader)
    # test_image, test_label = test_data_iter.next()
    # 开始确定网络模型
    model_name = "vgg16"
    net = vgg(model_name=model_name, num_classes=5, init_weights=True)
    # vgg(model_name="vgg16", **kwargs):model = VGG(make_features(model_name), **kwargs)
    #
    # VGG(self, features, num_classes=1000, init_weights=False):
    net.to(device)
    # 这行代码的意思是将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行
    loss_function = nn.CrossEntropyLoss()
    # nn.CrossEntropyLoss是pytorch下的交叉熵损失,用于分类任务使用
    optimizer = optim.Adam(net.parameters(), lr=0.0001)
    # 为了使用torch.optim,需先构造一个优化器对象Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数。
    # 要构建一个优化器optimizer,你必须给它一个可进行迭代优化的包含了所有参数(所有的参数必须是变量s)的列表。 然后,您可以指定程序优化特定的选项,例如学习速率,权重衰减等。
    # 训练次数
    epochs = 30
    best_acc = 0.0  # 最好准确率
    save_path = './{}Net.pth'.format(model_name)
    train_steps = len(train_loader)  # 训练集的个数
    for epoch in range(epochs):
        # train
        net.train()  # 开始训练
        # b) model.train() :启用 BatchNormalization 和Dropout。
        # 在模型测试阶段使用model.train() 让model变成训练模式,此时dropout和batch
        # normalization的操作在训练q起到防止网络过拟合的问题。
        running_loss = 0.0  # 损失
        # Tqdm 是一个快速,可扩展的Python进度条,可以在 Python 长循环中添加一个进度提示信息,
        # 用户只需要封装任意的迭代器 tqdm(iterator)。
        train_bar = tqdm(train_loader, file=sys.stdout)

        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()  # 一些优化算法,如共轭梯度和LBFGS需要重新评估目标函数多次,必须清除梯度
            outputs = net(images.to(device))  # 输出是预测值
            loss = loss_function(outputs, labels.to(device))  # 损失,通过预测和标签计算
            loss.backward()  # 反向传播计算梯度
            optimizer.step()  # step()方法来对所有的参数进行更新

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()  # 开始验证,计算准确率
        # a) model.eval(),不启用
        # BatchNormalization和Dropout。此时pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。
        # 不然的话,一旦test的batch_size过小,很容易就会因BN层导致模型performance损失较大;
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data  # 获取验证数据
                outputs = net(val_images.to(device))
                predict_y = torch.max(outputs, dim=1)[1]  # 预测值的种类的索引
                # output = torch.max(input, dim)
                # 输入
                # input是softmax函数输出的一个tensor
                # dim是max函数索引的维度0 / 1,0是每列的最大值,1是每行的最大值
                # 输出
                # 函数会返回两个tensor,第一个tensor是每行的最大值;第二个tensor是每行最大值的索引。

                # 对两个张量Tensor进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False。
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_accurate = acc / val_num  # 预测准确个数/总数
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:  # 保留最好的准确率(模型)
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    main()
  1. predecirpredecir

Lea el archivo a predecir, procéselo para obtener el vector, cargue el peso entrenado vgg16Net.pth, ejecute el modelo y obtenga la puntuación de cada categoría. El valor máximo se considera como el resultado de la predicción.

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import vgg


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img_path = "image/tulip.jpg"
    # img_path = "image/1.jpg"
    # img_path = "image/roses.jpg"
    # img_path = "image/zpp.jpg"
    # img_path = "image/zx4.jpg"
    # img_path = "image/sunflowersP.jpg"
    # img_path = "image/sunflowers.jpg"
    # img_path = "image/dandelion.jpg"
    # img_path = "image/daisy.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)  # 处理测试图片为张量
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)
    # unsqueeze()函数起升维的作用,参数表示在哪个地方加一个维度。
    # 在第一个维度(中括号)的每个元素加中括号 0表示在张 量最外层加一个中括号变成第一维。
    # 图像的向量为一个列表,大小是224*224,unsqueeze后变为1 x 224*224的张量

    # read class_indict
    json_path = './class_indices.json'  # 读取花种类名称,字典格式
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    with open(json_path, "r") as f:
        class_indict = json.load(f)

    # create model
    model = vgg(model_name="vgg16", num_classes=5).to(device)
    # load model weights
    weights_path = "./vgg16Net.pth"  # 加载训练好的权重
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    # 把权重填入模型,
    # map_location=torch.device('cpu'),意思是映射到cpu上,在cpu上加载模型,无论你这个模型从哪里训练保存的。
    # 一句话:map_location适用于修改模型能在gpu上运行还是cpu上运行
    model.load_state_dict(torch.load(weights_path, map_location=device))

    model.eval()  # 开始验证,不启用 BatchNormalization 和 Dropout。
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        # queeze()
        # 函数的功能是维度压缩。返回一个tensor(张量),其中input中大小为1的所有维都已删除。
        #
        # 举个例子:如果 input的形状为(A×1×B×C×1×D),那么返回的tensor的形状则为(A×B×C×D)
        predict = torch.softmax(output, dim=0)
        # torch.nn.Softmax中只要一个参数:来制定归一化维度如果是dim=0指代的是行,dim=1指代的是列。
        predict_cla = torch.argmax(predict).numpy()  # 返回最大值的索引,也就是预测种类的名称
        # torch.argmax(input, dim=None, keepdim=False)
        # 返回指定维度最大值的序号
        # dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index。

    # 打印种类名字和正确概率
    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)

    # 分别打印每个种类的可能概率
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()


if __name__ == '__main__':
    main()

Funciones: Implementar el reconocimiento de flores en la web.

  1. Uso: Ingrese cmd en la carpeta local del código para ingresar a la terminal, actívelo para cambiar el entorno virtual requerido, pip install streamlit para descargar las bibliotecas requeridas y ejecute el comando streamlit run app.py
  2. El código app.py llama a la biblioteca streamlit, pasa los resultados de la predicción y los muestra en la web.

Alcanzar resultados:

 

Supongo que te gusta

Origin blog.csdn.net/qq_44874004/article/details/127708644
Recomendado
Clasificación