11.20LL (1) grammar is determined, recursive descent parser

1. grammar  G (S):

(1)S -> AB

(2)A ->Da|ε

(3)B -> cC

(4)C -> aADC |ε

(5)D -> b|ε

Verify grammar  G (S) is not  LL (1) grammar?

 answer:

FIRST集:

       FIRST(A) = { b , a , ε}

       FIRST(C) = { a , ε}

       FIRST(D) = { b , ε}

 

FOLLOW集:

  FOLLOW (A) = { c , b , a , ε}

       FOLLOW (C) = { # }

       FOLLOW (D) = { a , #}

 

SELECT set:

       SELECT( A -> Da ) = FIRST( Da ) = { b , a }

       SELECT( A -> Da) = FIRST(Da) = { b, a }

  SELECT( A -> ε) = FOLLOW( A) = { c, b, a, # }

  SELECT( C -> aADC) = FIRST( aADC) = { a }

  SELECT( C -> ε) = FOLLOW(C) = { # }

  SELECT( D -> b) = FIRST(b) = { b }

  SELECT( D -> ε ) =FOLLOW(D) = { a, # }

Since SELECT (A -> Da) ∩ SELECT (A -> ε) = {a} ≠ ∅, so grammar G (S) is not LL (1) syntax.

 

 

2. ( last job ) to eliminate left after the recursive expression grammar whether it is LL (1) grammar?

1. Elimination left recursive following grammar, the symbol string analyzing i * i + i.

   Seeking FIRST set respectively, FOLLOW sets, and set SELECT

     E -> E+T | T

     T -> T*F | F

     F -> (E) | i

 answer:

Eliminate left recursion:

E -> TE '

      E '-> + TE' |

      T -> FT'

      T' -> *FT' | ε 

      F -> (E) | i

FIRST集:

  FIRST(E) = { ( , i }

  FIRST (E ') = {+, e}

  FIRST(T) = { ( , i }

  FIRST(T') = { * , ε }

  FIRST(F) = { ( , i }

FOLLOW集:

       FOLLOW(E) = { ) , # }

       FOLLOW(E') = { ) , # }

       FOLLOW(T) = { + , ) ,#}

       FOLLOW(T') = {+ , ) ,#}

       FOLLOW(F) = {* , + , ) ,#}

SELECT set:

  SELECT (E -> TE') = FIRST(TE') = { ( , i }

       SELECT(E' -> +TE') = FIRST(+TE') = { + }

       SELECT(E' -> ε) = FIRST(ε) - {ε} U FOLLOW(E') = FOLLOW(E') = { ) , # }

       SELECT(T -> FT') = FIRST(FT') = { ( , i }

       SELECT(T' -> *FT') = FIRST(*FT') = { * }

       SELECT(T' -> ε) = FIRST(ε) - {ε} U FOLLOW(T') = FOLLOW(T') = { + , ) ,# }

       SELECT(F -> (E)) = FIRST((E)) = { ( }

       SELECT(F -> i) = FIRST(i) = { i }

Since SELECT (E '-> + TE') ∩ SELECT (E '-> ε) = ∅,

  SELECT(T' -> *FT') ∩ SELECT(T' -> ε) = ∅,

  SELECT(F -> (E)) ∩ SELECT(F -> (E))   = ∅,

Therefore, the grammar is LL (1) grammar

 

3. The connection 2 , if it is LL (1) grammar, write its recursive descent parser code.

E()

    T();

       E'();

     }

E'()

T()

T'()

F()

 answer:

void ParseE(){

      if(lookhead =='(' || lookhead == 'i' ){

     Frset ();

     ParseE'();

}

      else{

        printf("syntx error\n");

    exit(0);

  }

}

 

void ParseE'(){

  switch(lookahead){

           case '+':

                  Match Token ( '+');

                  Frset ();

                  ParseE'();

                  break;

           case ')' , '#':

                  break;

           default:

                  printf("syntx error\n");

                  exit(0);

      }

}

 

void ParseT(){

  if(lookhead == '(' || lookhead == 'i' ){

    ParseF();

    Frset '();

  }

  else{

    printf("syntx error\n");

    exit(0);

  }

}

 

void ParseT'(){

  switch(lookahead){
           case '*':

                  Match Token ( '*');

                  ParseF();

                  Frset '();

                  break;

           case '+' , ')' , '#':

                  break;

           default:

                  printf("syntx error\n");

                  exit(0);

    }

}

void ParseF(){

  switch(lookahead){

           case '(':

                  Match Token ( '(');

                  ParseE();

                  Match Token ( ')');

                  break;

           case 'i':

                  Match Token ( 'in');

                  break;

           default:

                 printf("syntx error\n");

                  exit(0);

    }

}

 

 

Guess you like

Origin www.cnblogs.com/Azan1999/p/11896882.html