Graphical illustration of the relationship between curve integrals of the first kind and curve integrals of the second kind

Graphical illustration of the relationship between curve integrals of the first kind and curve integrals of the second kind

Notes related content:
1. Line Integral
2. Line Integral, Circulation, and Flux in Vector Fields


Curve integral of the first kind (for arc length ds dsd s for integration)(no directionality)
Physical meaning:f (x, y) f(x,y)f(x,y ) can be the linear density,ds dsd s is the arc length element, in the curveLLIntegrate over L to get the curve quality
∫ L f ( x , y ) ds \int_Lf(x,y)dsLf(x,y ) d s
second kind of curve integral (for coordinatesdx, dy dx, dyd x , d y are integrated)(directional)
Physical meaning:F ⃗ \vec{F}F is a variable force, dr ⃗ d\vec{r}dr is the displacement element, along the curve LLIntegrate in a certain direction of L
to get the work W d W = F ⃗ ⋅ dr ⃗ d W = { P ( x , y ) , Q ( x , y ) } ⋅ { dx , dy } d W = P ( x , y ) dx + Q ( x , y ) dy ∫ L d W = ∫ LF ⃗ ⋅ dr ⃗ = ∫ LP ( x , y ) dx + Q ( x , y ) dy dW=\vec{ F}\cdot d\vec{r}\\ ~\\ dW=\{P(x,y),Q(x,y)\}\cdot\{dx,dy\}\\ ~\\ dW= P(x,y)dx+Q(x,y)dy\\ ~\\ \int_LdW=\int_L\vec{F}\cdot d\vec{r}=\int_LP(x,y)dx+Q( x,y)dydW=F dr  dW={ P(x,y),Q(x,y)}{ dx,dy} dW=P(x,y)dx+Q(x,y ) d y LdW=LF dr =LP(x,y)dx+Q(x,y)dy
其中
P ( x , y ) P(x,y) P(x,y ) is the variable forceF ⃗ \vec{F}F At point (x, y) (x,y)(x,y ) alongxxComponent Q ( x , y ) Q(x,y) in the x- axis direction
Q(x,y ) is the variable forceF ⃗ \vec{F}F At point (x, y) (x,y)(x,y ) alongyyComponent force dx dx in the y- axis direction
d x is at point(x, y) (x,y)(x,y ) alongxxSmall displacement dy dy in the x- axis direction
d y is at point(x, y) (x,y)(x,y ) alongyySmall displacement in the y- axis direction
P ( x , y ) dx P(x,y)dxP(x,y ) d x is the variable forceF ⃗ \vec{F}F At point (x, y) (x,y)(x,y ) alongxxWork Q ( x , y ) dyof small displacement in the x- axis direction Q(x,y)dy
Q(x,y ) d y is the variable forceF ⃗ \vec{F}F At point (x, y) (x,y)(x,y ) alongyyThe work of small displacement in the y- axis direction

The relationship between curve integrals of the first kind and curve integrals of the second kind


∫ LP ( x , y ) dx + Q ( x , y ) dy = ∫ LP ( x , y ) cos ⁡ α ds + Q ( x , y ) cos ⁡ β ds \int_LP(x,y)dx+Q(x,y)dy=\int_LP(x,y)\cos\alpha ds+Q(x,y)\cos\beta dsLP(x,y)dx+Q(x,y ) d y=LP(x,y)cosαds+Q(x,y)cosβds

Guess you like

Origin blog.csdn.net/weixin_48524215/article/details/132888409