Graphical symmetry of curve integrals

1. Illustrating the symmetry of curve integrals

1.1 General symmetries of curve integrals of the first kind

The principles of double integrals, triple integrals, curve integrals of the first kind, and general symmetries of surface integrals of the first kind are similar. The principles of
plane curves and space curves are the same. The following content takes space curves as an example.

The figure shows the integration region Γ \GammaΓ,函数 f ( x , y , z ) f(x,y,z) f(x,y,z ) represents point( x , y , z ) (x,y,z)(x,y,The density at z ) can be expressed by color depth, but drawing is too cumbersome, so the integrand is not visualized. The

integral area space curve Γ \GammaΓAbout xx_even function of x (i.e. with respect to yoz yozyoz plane symmetry)

integral area space curveΓ \GammaΓAbout yy_Even function of y (i.e. xoz with respect toxozx oz plane symmetry)

integral area space curveΓ \GammaΓAbout zz_Even function of z (i.e. xoy with respect toxoyx oy plane symmetry)

1.2 Rotation symmetry of curve integrals of the first kind

Rotation symmetry means that the integration region LLThe expression of L is in x , y , zx , y , zThe form remains unchanged after x , y and z
are interchanged, that is, the integral has nothing to do with the integral variable. Example:
L: { x 2 + y 2 + z 2 = a 2 x + y + z = 0 L:\begin{equation} \ begin{cases} x^2+y^2+z^2&=a^2\\ x+y+z&=0 \end{cases} \end{equation}L:{ x2+y2+z2x+y+z=a2=0
∮ L x 2 d s \oint_Lx^2ds Lx2ds ∮ L x d s \oint_Lxds L
The intersection of the x d s sphere and the plane is the integration area space curve LLL

changex, yx, yAfter exchanging x and y , the expression is: y 2 + x 2 + z 2 = a 2 y^2+x^2+z^2=a^2y2+x2+z2=a2 , the expression remains unchanged,
variablesy, zy, zThe expression after swapping y and z is: x 2 + z 2 + y 2 = a 2 x^2+z^2+y^2=a^2x2+z2+y2=a2 , the expression remains unchanged,
variablesx, zx, zThe expression after exchanging x and z is: z 2 + y 2 + x 2 = a 2 z^2+y^2+x^2=a^2z2+y2+x2=a2 , the expression remains unchanged.xx
in the integrand willReplace x with yyywazz __z后积分大小不变
∮ L x 2 d s = ∮ L y 2 d s = ∮ L z 2 d s   ∮ L x 2 d s = 1 3 ( ∮ L x 2 d s + ∮ L y 2 d s + ∮ L z 2 d s )   ∮ L x 2 d s = 1 3 ( ∮ L x 2 + y 2 + z 2 d s )   ∮ L x 2 d s = a 2 3 ( ∮ L d s ) = a 2 3 ⋅ 2 π a = 2 3 π a 3 \oint_Lx^2ds=\oint_Ly^2ds=\oint_Lz^2ds\\ ~\\ \oint_Lx^2ds=\frac{1}{3}\big(\oint_Lx^2ds+\oint_Ly^2ds+\oint_Lz^2ds\big)\\ ~\\ \oint_Lx^2ds=\frac{1}{3}\big(\oint_Lx^2+y^2+z^2ds\big)\\ ~\\ \oint_Lx^2ds=\frac{a^2}{3}\big(\oint_Lds\big)=\frac{a^2}{3}\cdot2\pi a=\frac{2}{3}\pi a^3\\ Lx2d s_=Ly2d s_=Lz2d s_ Lx2d s_=31(Lx2d s_+Ly2d s_+Lz2ds )__ Lx2d s_=31(Lx2+y2+z2ds )__ Lx2d s_=3a2(Lds)=3a22πa=32p a3
Change amount x, yx, yThe expression after exchanging x and y is: y + x + z = 0 y+x+z=0y+x+z=0 , the expression remains unchanged.
Variablesy, zy, zThe expression after swapping y and z is: x + z + y = 0 x+z+y=0x+z+y=0 , the expression remains unchanged.
Variablesx, zx, zThe expression after exchanging x and z is:z + y + x = 0 z+y+x=0z+y+x=0 , the expression remains unchanged.xx
in the integrand will beReplace x with yyywazz __z后积分大小不变
∮ L x d s = ∮ L y d s = ∮ L z d s   ∮ L x d s = 1 3 ( ∮ L x d s + ∮ L y d s + ∮ L z d s )   ∮ L x d s = 1 3 ( ∮ L x + y + z d s ) = 1 3 ( ∮ L 0 d s ) = 0 \oint_Lxds=\oint_Lyds=\oint_Lzds\\ ~\\ \oint_Lxds=\frac{1}{3}\big(\oint_Lxds+\oint_Lyds+\oint_Lzds\big)\\ ~\\ \oint_Lxds=\frac{1}{3}\big(\oint_Lx+y+zds\big)=\frac{1}{3}\big(\oint_L0ds\big)=0\\ Lx d s=Lyds=Lz d s Lx d s=31(Lx d s+Lyds+Lz d s ) Lx d s=31(Lx+y+z d s )=31(L0ds)=0

1.3 General symmetry of curve integrals of the second kind

When the integration area is a plane curve
Plane curve LLLAbout yy_y- axis symmetry

Plane curve LLLAbout xx_x- axis symmetry

When the integration area is a space curve
Space curve Γ \GammaΓis aboutxxeven function of x (i.e. with respect to yoz yozyoz plane symmetry)


Space curve Γ \GammaΓ is aboutyyEven function of y (i.e. xoz with respect toxozx oz plane symmetry)


Space curve Γ \GammaΓis aboutzz_Even function of z (i.e. xoy with respect toxoyx oy plane symmetry)


Guess you like

Origin blog.csdn.net/weixin_48524215/article/details/132890280
Recommended