Graphing the symmetry of surface integrals

1. Diagram the symmetry of surface integrals

1.1 General symmetries of surface integrals of the first kind

The principles of double integrals, triple integrals, curve integrals of the first kind, and general symmetries of surface integrals of the first kind are similar. The principles of planes
and space surfaces are the same. The following content takes space surfaces as an example.
The figure shows the integration area Σ \ SigmaΣ,函数 f ( x , y , z ) f(x,y,z) f(x,y,z ) represents point( x , y , z ) (x,y,z)(x,y,The density at z ) can be represented by color depth, but drawing is too cumbersome, so the integrand is not visualized. The

integrated area space surface Σ \SigmaΣAbout xx_even function of x (i.e. with respect to yoz yozyoz plane symmetry)

Integration region space surface Σ \SigmaΣAbout yy_Even function of y (i.e. xoz with respect toxozx oz plane symmetry)

integration area space surfaceΣ \SigmaΣAbout zz_Even function of z (i.e. xoy with respect toxoyx oy plane symmetry)

1.2 Rotation symmetry of surface integrals of the first kind

Rotation symmetry means that the integration region Σ \SigmaThe expression of Σ is inx, y, zx, y, zThe form remains unchanged after x , y and z are interchanged, that is, the integral has nothing to do with the integral variable.
Example:
Assume the surfaceΣ \SigmaΣ ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = 1 |x|+|y|+|z|=1 x+y+z=1,求 ∯ Σ ( x + ∣ y ∣ ) d S \oiint\limits_{\Sigma}(x+|y|)dS S (x+y ) d S
surfaceΣ \SigmaΣAbout xozxozx oz plane symmetry, that is, aboutxxx is an even function, and the integrandx + ∣ y ∣ x+|y|x+y ∣About xx_x is an odd function, so∯ Σ xd S = 0 \oiint\limits_{\Sigma}xdS=0S x d S=0
∯ Σ ( x + ∣ y ∣ ) d S = ∯ Σ ∣ y ∣ d S \oiint\limits_{\Sigma}(x+|y|)dS=\oiint\limits_{\Sigma}|y|dS S (x+y)dS=S y d S
changex , yx, yThe expression after exchanging x and y is: ∣ y ∣ + ∣ x ∣ + ∣ z ∣ = 1 |y|+|x|+|z|=1y+x+z=1 , the expression remains unchanged,
variablesy, zy, zThe expression after swapping y and z is: ∣ x ∣ + ∣ z ∣ + ∣ y ∣ = 1 |x|+|z|+|y|=1x+z+y=1 , the expression remains unchanged,
variablesx, zx, zThe expression after exchanging x and z is: ∣ z ∣ + ∣ y ∣ + ∣ x ∣ = 1 |z|+|y|+|x|=1z+y+x=1 , the expression remains unchanged.
After verification, the expression in the integral area has rotation symmetry, thenyyReplace y with xxxwazz __z
∣ y ∣ d S = ∯ Σ ∣ x ∣ d S = ∯ Σ ∣ z ∣ d S ∯ Σ ∣ y ∣ d S = 1 3 ( ∯ Σ ∣ y ∣ d S + ∯ Σ ∣ x ∣ d S + ∯ Σ ∣ z ∣ d S ) ∯ Σ ∣ y ∣ d S = 1 3 ( ∯ Σ ∣ y ∣ + ∣ x ∣ + ∣ z ∣ d S ) ∯ Σ ∣ y ∣ d S = 3 ∯ Σ d S = 1 3 ⋅ 8 ⋅ 3 4 ( 2 ) 2 = 4 3 3 . limits_{\Sigma}|z|dS\\ ~\\ \oiint\limits_{\Sigma}|y|dS=\frac{1}{3}\big(\oiint\limits_{\Sigma}|y|dS+ \oiint\limits_{\Sigma}|x|dS+\oiint\limits_{\Sigma}|z|dS\big)\\ ~\\ \oiint\limits_{\Sigma}|y|dS=\frac{1} {3}\big(\oiint\limits_{\Sigma}|y|+|x|+|z|dS\big)\\ ~\\ \oiint\limits_{\Sigma}|y|dS=\frac{ 1}{3}\oiint\limits_{\Sigma}dS=\frac{1}{3}\cdot8\cdot\frac{\sqrt{3}}{4}(\sqrt{2})^2=\ frac{4\sqrt{3}}{3}S ydS=S xdS=S zdS S ydS=31(S ydS+S xdS+S zdS) S ydS=31(S y+x+zdS) S ydS=31S dS=31843 (2 )2=343
The picture below shows the surface Σ \SigmaΣ (consisting of 8 sides of length2 \sqrt{2}2 composed of equilateral triangles), ∯ Σ d S \oiint\limits_{\Sigma}dSS d S represents the surface area

1.3 General symmetries of surface integrals of the second kind

Integration region space surface Σ \SigmaΣAbout xx_even function of x (i.e. with respect to yoz yozyoz plane symmetry)
is to highlight the various directions after vector decomposition to avoid confusion with the surface. The surfaceΣ \SigmaS






Integration region space surface Σ \SigmaΣAbout yy_Even function of y (i.e. xoz with respect toxozx oz plane symmetry)
is to highlight the various directions after vector decomposition to avoid confusion with the curved surface. The curved surfaceΣ \SigmaThe Σ principle is similar to the above, and the plot integration area space surface Σ \Sigma
is no longer performed.

ΣAbout zz_Even function of z (i.e. xoy with respect toxoyx oy plane symmetry)
is to highlight the various directions after vector decomposition to avoid confusion with the surface. The surfaceΣ \SigmaThe Σ
principle is similar to the above, and no drawing is required.

Guess you like

Origin blog.csdn.net/weixin_48524215/article/details/132945472