[Probability Theory] Distribution Function and Mathematical Expectation of Continuous Random Variables (2)

Article Directory

fill in the blank

  1. If the density function of X is
    p ( x ) = { x , 0 ≤ x < 1 ; 2 − x , 1 ≤ x < 2 ; 0 , others. p(x)= \begin{cases} x,&0 \le x <1; \\ 2-x,&1 \le x<2; \\ 0,&other. \end{cases}p(x)=x,2x,0,0x<1;1x<2;Other .
    Try to find P{X≤1.5}=_____ 【Correct answer: 7/8 or 0.875】(express the result in fractional form)
    Solution:
    P { X ≤ 1.5 } = ∫ − ∞ 1.5 p ( x ) dx = ∫ 0 1 xdx + ∫ 1 1.5 ( 2 − x ) dx = x 2 2 ∣ 0 1 + ( 2 x − x 2 2 ) ∣ 1 1.5 = 1 2 − 0 + ( 3 − 1. 5 2 2 ) − 3 2 = 7 8 P \{ X \le 1.5 \} = \int _{- \infty }^{1.5}p(x)dx= \int _{0}^{1}xdx+ \int _{1}^{1.5}( 2-x)dx= \frac {x^{2}}{2}|_{0}^{1}+(2x- \frac {x^{2}}{2})|^{1.5}_1 =\frac{1}{2}-0+(3- \frac {1.5^{2}}{2})- \frac {3}{2}= \frac {7}{8}P{ X1.5}=1.5p(x)dx=01x d x+11.5(2x)dx=2x201+( 2x _2x2)11.5=210+(321.52)23=87

  2. Let the density function of random variable X be
    p ( x ) = { a + bx 2 , 0 ≤ x ≤ 1 ; 0 , others. p(x)= \begin{cases} a+bx^{2},&0 \le x \le 1; \\ 0,&other. \end{cases}p(x)={ a+bx2,0,0x1;Other .
    If E ( X ) = 2 3 E(X)= \frac {2}{3}E ( X )=32,
    seek: a=_____ [correct answer: 1/3] and b=_____ [correct answer: 2]; (please express the result of a in approximate fractions) multiple answers
    (multiple blanks) can be filled in a question, Insert the solution where you fill in the answer
    : ∫ − ∞ + ∞ p ( x ) dx = ∫ 0 1 ( a + bx 2 ) dx = ( ax + b ⋅ x 3 3 ) ∣ 0 1 = a + b from
    regularity 3 = 1 \int _{- \infty }^{+ \infty }p(x)dx= \int _{0}^{1}(a+bx^{2})dx=(ax+b \cdot \frac {x^{3}}{3})|_{0}^1=a+ \frac {b}{3}=1+p(x)dx=01(a+bx2)dx=(ax+b3x3)01=a+3b=1,又 E ( X ) = ∫ − ∞ + ∞ x p ( x ) d x = ∫ 0 4 x ( a + b x 2 ) d x = ( a ⋅ x 2 2 + b ⋅ x 4 4 ) ∣ 0 1 = a 2 + b 4 = 2 3 E(X)= \int _{- \infty }^{+ \infty }xp(x)dx= \int _{0}^{4}x(a+bx^{2})dx=(a \cdot \frac {x^{2}}{2}+b \cdot \frac {x^{4}}{4})|_{0}^{1}= \frac {a}{2}+ \frac {b}{4}= \frac {2}{3} E ( X )=+xp(x)dx=04x(a+bx2)dx=(a2x2+b4x4)01=2a+4b=32,故a = 1 3 , b = 2 a= \frac {1}{3},b=2a=31,b=2

  3. Let the density function of random variable X be as follows,
    p ( x ) = { e − x , x > 0 ; 0 , x ≤ 0. p(x)= \begin{cases} e^{-x},&x>0; \\ 0,&x \le 0. \end{cases}p(x)={ ex,0,x>0;x0.
    Try E ( 2 X + 5 ) E(2X+5)E ( 2 X+5)=_____ 【正确答案: 7】;
    解:
    E ( 2 X + 5 ) = ∫ 0 + ∞ ( 2 x + 5 ) e − x d x = ∫ 0 + ∞ ( 2 x + 5 ) ( − d e − x ) = − ( 2 x + 5 ) e − x ∣ 0 + ∞ + ∫ 0 + ∞ 2 e − x d x = 5 − 2 e − x ∣ 0 + ∞ = 7 E(2X+5)=∫_0^{+∞}(2x+5)e^{−x}dx=∫_0^{+∞}(2x+5)(−de^{−x})=−(2x+5)e^{−x}|_0^{+∞}+∫_0^{+∞}2e^{−x}dx=5−2e^{−x}|_0^{+∞}=7 E ( 2 X+5)=0+( 2x _+5)e- x dx=0+( 2x _+5 ) ( d ex)=( 2x _+5)ex0++0+2e _- x dx=5−2e _ _ _x0+=7

  4. The market share X of a new product in the future is a random variable that only takes values ​​on the interval (0, 1), and its density function is
    p ( x ) = { 4 ( 1 − x ) 3 , 0 < x < 1 ; 0 , others. p(x)= \begin{cases} 4(1-x)^{3},&0<x<1; \\ 0,&others. \end{cases}p(x)={ 4(1x)3,0,0<x<1;Other .
    Average market share =_____【Correct answer: 0.2 or 1/5】
    Solution:
    E ( X ) = ∫ 0 1 x ⋅ 4 ( 1 − x ) 3 dx = ∫ 0 1 ( 4 x − 12 x 2 + 12 x 3 − 4 x 4 ) dx = ( 2 x 2 − 4 x 3 + 3 x 4 − 4 5 x 5 ) ∣ 0 1 = 1 5 E(X)= \int _{0}^{1}x \cdot 4(1-x)^{3}dx= \int _{0}^{1}(4x-12x^{2}+12x^{3}-4x^{4})dx=(2x^{2 }-4x^{3}+3x^{4}- \frac {4}{5}x^{5})|^1_0= \frac {1}{5}E ( X )=01x4(1x)3dx=01( 4x _12x2+12x34x _4)dx=( 2x _24x _3+3x _454x5)01=51

  5. The maintenance time T of a bulldozer in a factory is a random variable (unit: h), and its density function is
    p ( t ) = { 0.02 e − 0.02 t , t > 0 ; 0 , t ≤ 0. p(t) = \begin{cases} 0.02e^{-0.02t},&t>0; \\ 0,&t \le 0. \end{cases}p(t)={ 0.02e0 . 0 2 t ,0,t>0;t0.
    Average maintenance time=______【Correct answer: 50】
    Solution:
    Average maintenance time E ( T ) = ∫ 0 + ∞ t ⋅ 0.02 e − 0.02 tdt = ∫ 0 + ∞ t ( − de − 0.02 t ) = − te − 0.02 t ∣ 0 + ∞ + ∫ 0 + ∞ e − 0.02 tdt = e − 0.02 t − 0.02 ∣ 0 + ∞ = 50 E(T)= \int _{0}^{+ \infty }t \cdot 0.02e^ {-0.02t}dt= \int _{0}^{+ \infty }t(-de^{-0.02t}) =-te^{-0.02t}|_{0}^{+ \infty } + \int _{0}^{+ \infty }e^{-0.02t}dt= \frac {e^{-0.02t}}{-0.02}|_{0}^{+ \infty }=50E(T)=0+t0.02e0 . 0 2 t dt=0+t ( d e0 . 0 2t ) _=- t e0.02t0++0+e0 . 0 2 t dt=0.02e0 . 0 2t _0+=50

  6. The time X for a student to complete an assignment is a random variable in hours. Its density function is
    p ( x ) = { cx 2 + x , 0 ≤ x ≤ 0.5 ; 0 , others. p(x)= \begin{ cases} cx^{2}+x,&0 \le x \le 0.5; \\ 0,&other. \end{cases}p(x)={ cx2+x,0,0x0.5;Other .
    (1) Constant c=_____ [Correct answer: 21];
    (2) Find the probability of completing an assignment within 20 minutes =_____ [Correct answer: 17/54]; (Please express the result in approximate fractions) (
    3) Find 10 minutes Probability of completing an assignment above=_____ 【Correct answer: 103/108】; (Please express the result in approximate fractions)
    Solution:
    (1) According to the regularity of the density function, ∫ − ∞ + ∞ p ( x ) dx = ∫ 0 0.5 ( cx 2 + x ) dx = ( cx 3 3 + x 2 2 ) ∣ 0 ∞ = c 24 + 1 8 = 1 \int _{- \infty }^{+ \infty }p(x)dx= \int _{0}^{0.5}(cx^{2}+x)dx=(c \frac {x^{3}}{3}+ \frac {x^{2}}{2})|_{ 0}^{ \infty }= \frac {c}{24}+ \frac {1}{8}=1+p(x)dx=00.5(cx2+x)dx=(c3x3+2x2)0=24c+81=1. So c=21;
    (2) Distribution function F(x)=P{X≤x}, the subsection point is x=0, 0.5,
    when x<0,F ( x ) = P { X ≤ x } = P ( ϕ ) = 0 F(x)=P\{X≤x\}=P(\phi)=0F(x)=P{ Xx}=P ( ϕ )=0
    当0≤x<0.5时,F(x)= ∫ − ∞ x p ( u ) d u = ∫ 0 x ( 21 u 2 + u ) d u = ( 7 u 3 + u 2 2 ) ∣ 0 x = 7 x 3 + x 2 2 \int _{- \infty }^{x}p(u)du= \int _{0}^{x}(21 u^{2}+u)du=(7u^{3}+ \frac {u^{2}}{2})|_0^{x}=7x^{3}+ \frac {x^{2}}{2} xp ( u ) d u=0x( 21 u _2+u ) d u=( 7 u3+2u2)0x=7x _3+2x2
    When x≥0.5, F ( x ) = P { X ≤ x } = P ( Ω ) = 1 F(x)=P\{X≤x\}=P(Ω)=1F(x)=P{ Xx}=P ( Ω )=1 ,
    so the distribution function of X
    F ( x ) = { 0 , x < 0 ; 7 x 3 + x 2 2 , 0 ≤ x < 0.5 ; 1 , x ≥ 0.5 ; F(x)= \begin{cases} 0 ,&x<0; \\ 7x^{3}+ \frac {x^{2}}{2},&0 \le x<0.5; \\ 1,&x \ge 0.5; \end{cases}F(x)=0,7x _3+2x2,1,x<0;0x<0.5;x0.5;
    (3) 所求概率为 P { X ≤ 20 60 = 1 3 } = F ( 1 3 ) = 7 × ( 1 3 ) 3 + 1 2 × ( 1 3 ) 2 = 7 27 + 1 18 = 17 54 P \{ X \le \frac {20}{60}= \frac {1}{3} \} =F \left ( \frac {1}{3} \right )=7 \times \left ( \frac {1}{3} \right )^{3}+ \frac {1}{2} \times \left ( \frac {1}{3} \right )^{2}= \frac {7}{27}+ \frac {1}{18}= \frac {17}{54} P{ X6020=31}=F(31)=7×(31)3+21×(31)2=277+181=5417;
    (4) 所求概率为 P { X ≥ 10 60 = 1 6 } = 1 − F ( 1 6 ) = 1 − 7 × ( 1 6 ) 3 − 1 2 × ( 1 6 ) 2 = 1 − 7 216 − 1 72 = 103 108 P \{ X \ge \frac {10}{60}= \frac {1}{6} \} =1-F \left ( \frac {1}{6} \right )=1-7 \times \left ( \frac {1}{6} \right )^{3}- \frac {1}{2} \times \left ( \frac {1}{6} \right )^{2}=1- \frac {7}{216}- \frac {1}{72}= \frac {103}{108} P{ X6010=61}=1F(61)=17×(61)321×(61)2=12167721=108103

Guess you like

Origin blog.csdn.net/m0_68111267/article/details/131482984