The definite integral of several powers of sin x and cos x

The definite integral of several powers of sin x and cos x

∫ 0 π 2 sin ⁡ nx = ∫ 0 π 2 cos ⁡ nx = { n − 1 n × n − 3 n − 2 × ⋯ × 1 2 × π 2 n is an even number n − 1 n × n − 3 n − 2 × ⋯ × 1 2 × 1 n is an odd number\int_0^{\frac{\pi}{2}}\sin^nx=\int_0^{\frac{\pi}{2}}\cos^nx= \begin {cases} \dfrac{n-1}{n}\times \dfrac{n-3}{n-2}\times \cdots\times \dfrac 12\times \dfrac{\pi}{2}\qquad n is an even number\\ \qquad \\ \dfrac{n-1}{n}\times \dfrac{n-3}{n-2}\times \cdots\times \dfrac 12\times 1\qquad n is an odd number\ end{cases}02psinnx=02pcosnx= nn1×n2n3××21×2pn is an even numbernn1×n2n3××21×1n is an odd number

prove:

\qquad According to sin ⁡ x \sin xsinx cos ⁡ x \cos x cosx[ 0 , π 2 ] [0,\dfrac{\pi}{2}][0,2p] on∫ 0 π 2 sin ⁡ nxdx = ∫ 0 π 2 cos ⁡ nxdx \int_0^{\frac{\pi}{2}}\sin^n xdx=\int_0^{\frac{\ pi}{2}}\cos^n xdx02psinnx d x=02pcosnx d x

\qquad I n = ∫ 0 π 2 sin ⁡ n x = ∫ 0 π 2 cos ⁡ x d x I_n=\int_0^{\frac{\pi}{2}}\sin^nx=\int_0^{\frac{\pi}{2}}\cos xdx In=02psinnx=02pcosx d x , then

I n = ∫ 0 π 2 sin ⁡ x ⋅ sin ⁡ n − 1 xdx = ∫ 0 π 2 sin ⁡ n − 1 xd ( − cos ⁡ x ) = − cos ⁡ x ⋅ sin ⁡ n − 1 x ∣ 0 π 2 − ∫ 0 π 2 ( − cos ⁡ x ) d ( sin ⁡ n − 1 x ) I_n=\int_0^{\frac{\pi}{2}}\sin x\cdot \sin^{n-1}xdx =\int_0^{\frac{\pi}{2}}\sin^{n-1}xd(-\cos x)=-\cos x\cdot \sin^{n-1}x\bigg\vert_0 ^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}}(-\cos x)d(\sin^{n-1}x)In=02psinxsinn1x d x=02psinn1xd(cosx)=cosxsinn1x 02p02p(cosx)d(sinn1x)

= ( n − 1 ) ∫ 0 π 2 cos ⁡ 2 x ⋅ sin ⁡ n − 2 x d x = ( n − 1 ) ( ∫ 0 π 2 sin ⁡ n − 2 x d x − ∫ 0 π 2 sin ⁡ n x d x ) = ( n − 1 ) I n − 2 − ( n − 1 ) I n =(n-1)\int_0^{\frac{\pi}{2}}\cos^2x\cdot \sin^{n-2}xdx=(n-1)(\int_0^{\frac{\pi}{2}}\sin^{n-2}xdx-\int_0^{\frac{\pi}{2}}\sin^n xdx)=(n-1)I_{n-2}-(n-1)I_n =(n1)02pcos2xsinn2x d x=(n1)(02psinn2x d x02psinnx d x )=(n1)In2(n1)In

\qquad Add ( n − 1 ) I n (n-1)I_n to both sides of the equation(n1)InObtained n I n = ( n − 1 ) I n − 2 nI_n=(n-1)I_{n-2}I _n=(n1)In2,即I n = n − 1 n I n − 2 I_n=\dfrac{n-1}{n}I_{n-2}In=nn1In2. It can be proved by mathematical induction.

Guess you like

Origin blog.csdn.net/tanjunming2020/article/details/131072756