Calculation of Definite Integral (Piecewise Integral) Exercises

Prerequisite knowledge: Calculation of definite integrals (segmented integrals)

Exercise 1

Calculate ∫ 1 ee ∣ ln ⁡ x ∣ dx \int_{\frac 1e}^e|\ln x|dxe1elnxdx

Solution:
\qquad原式 = ∫ 1 e 1 − ln ⁡ x d x + ∫ 1 e ln ⁡ x d x = − ln ⁡ x ∣ 1 e 1 + ln ⁡ x ∣ 1 e = 1 + 1 = 2 =\int_{\frac 1e}^1-\ln xdx+\int_1^e\ln xdx=-\ln x\bigg\vert_{\frac 1e}^1+\ln x\bigg\vert_1^e=1+1=2 =e11lnx d x+1elnx d x=lnx e11+lnx 1e=1+1=2

Exercise 2

已知 f ( x ) = { 1 1 + x 2 , x ≥ 0 x e x 2 , x < 0 f(x)=\begin{cases} \dfrac{1}{1+x^2},\quad x\geq 0\\ \qquad \\ xe^{x^2},\quad x<0 \end{cases} f(x)= 1+x21,x0x ex2,x<0, calculate ∫ − 1 1 f ( x ) dx \int_{-1}^1f(x)dx11f(x)dx

Solution:
\qquad原式 = ∫ − 1 0 x e x 2 d x + ∫ 0 1 1 1 + x 2 d x =\int_{-1}^0xe^{x^2}dx+\int_0^1\dfrac{1}{1+x^2}dx =10x ex2dx+011+x21dx

= 1 2 e x 2 ∣ − 1 0 + arctan ⁡ x ∣ 0 1 = 1 2 − e 2 + π 4 \qquad\qquad =\dfrac 12e^{x^2}\bigg\vert_{-1}^0+\arctan x\bigg\vert_0^1=\dfrac 12-\dfrac{e}{2}+\dfrac{\pi}{4} =21ex2 10+arctanx 01=212e+4p


Exercise 3

已知 f ( x ) = { 1 + x 2 , x ≤ 0 e − x , x > 0 f(x)=\begin{cases} 1+x^2,\quad x\leq 0\\ e^{-x},\quad x>0 \end{cases} f(x)={ 1+x2,x0ex,x>0, calculate ∫ 1 3 f ( x − 2 ) dx \int_1^3f(x-2)dx13f(x2)dx

Solution:
\qquad原式 = ∫ 1 2 [ 1 + ( x − 2 ) 2 ] d x + ∫ 2 3 e 2 − x d x = ∫ 1 2 ( x 2 − 4 x + 5 ) d x + ∫ 2 3 e 2 − x d x =\int_1^2[1+(x-2)^2]dx+\int_2^3e^{2-x}dx=\int_1^2(x^2-4x+5)dx+\int_2^3e^{2-x}dx =12[1+(x2)2]dx+23e2 x dx=12(x24x _+5)dx+23e2 x dx

= ( 1 3 x 3 − 2 x 2 + 5 x ) ∣ 1 2 − e 2 − x ∣ 2 3 = 14 3 − 10 3 − 1 e + 1 = 7 3 − 1 e \qquad\qquad =(\dfrac 13x^3-2x^2+5x)\bigg\vert_1^2-e^{2-x}\bigg\vert_2^3=\dfrac{14}{3}-\dfrac{10}{3}-\dfrac 1e+1=\dfrac 73-\dfrac1e =(31x32x _2+5 x ) 12e2x 23=314310e1+1=37e1

Guess you like

Origin blog.csdn.net/tanjunming2020/article/details/131074641