What is the integral of e x raised to the power 2?

How to calculate the indefinite integral of e raised to the power of x2

I had this problem when I was studying advanced mathematics. After searching through search engines, I found that it was difficult to find the correct answer to this question. Most of the respondents calculated it as definite integrals, while others used the integral method by parts and then uploaded an incorrect answer.
First of all, it is impossible to calculate the result using the integral method of parts . The result is as follows: < a i=4> ∫ e x 2 d x = x e x − ∫ x d e x 2 = x e x − ∫ e x 2 ⋅ 2 x d x \int e^{x^2}\,\mathrm{d}x =xe^x-\int x \,\mathrm{d}{e^{x^2}} =xe^x-\int e^{x^2}\cdot 2x\,\mathrm{d}x
It isx2dx=xexxdex2=xexIt isx22xdx
After this, there is no way to go on. The wrong person is probably going to 2 x 2x 2xextracted.

So does this function not have an original function?
According to the existence theorem of original function, it is not difficult to find e x 2 e^{x^2} It isx2 is a continuous function in the entire interval, so its original function must exist.

However, having a primitive function does not mean that it can be expressed in the form of basic elementary functions.

So we can consider using Taylor's formula to e x 2 e^{x^2} It isxExpand 2, calculate its convergence domain, and calculate the indefinite integral on its convergence domain.
① will e x 2 e^{x^2} It isx2 expands into a power series.
e x 2 = 1 + x 2 + x 4 2 ! + x 6 3 ! + ⋯ + x 2 n n ! + ⋯ = ∑ n = 0 ∞ x 2 n n ! e^{x^ 2}=1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\cdots\,+\frac{x^{2n}}{n! }\,+\cdots =\sum_{n=0}^\infty\frac{x^{2n}}{n!} It isx2=1+x2+2!x4+3!x6++n!x2n+=n=0n!x2n
② Find the method based on the convergence domain of the power series:
If lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ \lim_{ n\to\infty}\left\vert \frac{a_{n+1}}{a_n} \right\vert=\rho limn anan+1 =ρ , 则 ∑ n = 0 ∞ a n x n \sum_{n=0}^\infty a_nx^n n=0anxn Target radius R R R Definitely
R = { 1 ρ , ρ ≠ 0 + ∞ , ρ = 0 0 , ρ = + ∞ R =\begin{cases}\frac{1}{\rho},&\rho\ne0\\+\infty,&\rho=0\\0,&\rho=+\infty\end{cases } R= r1,+,0,r=0r=0r=+
Find the convergence radius R of the power series obtained in ①:
ρ = lim ⁡ n → ∞ ∣ 1 ( n + 1 ) ! 1 n ! ∣ = lim ⁡ n → ∞ 1 n + 1 = 0 ⇒ R = + ∞ \rho=\lim_{n\to\infty}\left\vert \frac{\frac{1}{(n+1)!}}{\frac{1 }{n!}} \right\vert =\lim_{n\to\infty}\frac{1}{n+1}=0\, \Rightarrow R=+\infty r=nlim n!1(n+1)!1 =nlimn+11=0R=+
则①中幂级继继浶嶺为 I = ( − ∞ , + ∞ ) I=(-\infty,+\infty) I=(,+)

③According to the properties of the power series summation function:
Power series ∑ n = 0 ∞ a n x n \sum_{n=0} ^\infty a_nx^n n=0anxn sum function S ( x ) S(x) S(x) Where it is located < /span> I I I 上可积,且有逐项积分公式
∫ 0 x S ( t )   d t = ∫ 0 x ∑ n = 0 ∞ a n t n   d t = ∑ n = 0 ∞ a n ∫ 0 x t n   d t = ∑ n = 0 ∞ a n n + 1 x n + 1   (   x ∈ I ) \int_0^xS(t)\,\mathrm{d}t=\int_0^x\sum_{n=0}^\infty a_nt^n\,\mathrm{d}t=\sum_{n=0}^\infty a_n\int_0^xt^n\,\mathrm{d}t=\sum_{n=0}^\infty \frac{a_n}{n+1}x^{n+1}\,(\,x\in I) 0xS(t)dt=0xn=0antndt=n=0an0xtndt=n=0n+1anxn+1(xI)
New parity number ∑ n = 0 ∞ a n n + 1 x n + 1 \sum_{n=0}^\infty \frac{a_n}{n+1}x^{n+1} n=0n+1anxn+1Area radius given source class number homology.

Inko e x 2 e^{x^2} It isx2的不定积分终于可以计算了:
∫ e x 2   d x = ∫ a x e t 2 d t = ∫ a 0 e t 2 d t   + ∫ 0 x e t 2 d t = ∫ a 0 e t 2 d t   + ∫ 0 x ∑ n = 0 ∞ t 2 n n !   d t = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 )   n !   + C ,      x ∈ ( − ∞ , + ∞ ) \begin{aligned} \int e^{x^2}\,\mathrm{d}x &= \int_a^xe^{t^2}\mathrm{d}t\\&=\int_a^0e^{t^2}\mathrm{d}t\,+\int_0^xe^{t^2}\mathrm{d}t\\&=\int_a^0e^{t^2}\mathrm{d}t\,+\int_0^x\sum_{n=0}^\infty \frac{t^{2n}}{n!}\,\mathrm{d}t\\&=\sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)\,n!}\,+C,\,\,\,\,x\in (-\infty,+\infty) \end{aligned} It isx2dx=axIt ist2dt=a0It ist2dt+0xIt ist2dt=a0It ist2dt+0xn=0n!t2ndt=n=0(2n+1)n!x2n+1+C,x(,+)
Hope it helps readers

Guess you like

Origin blog.csdn.net/BuleFACE_Zhang/article/details/128633333