Some Properties of Definite Integral

Prerequisite knowledge: Newton-Leibniz formula

Parity

set fff [ − a , a ] ( a > 0 ) [-a,a](a>0) [a,a](a>0 ) , then

∫ − aaf ( x ) dx = { 2 ∫ 0 af ( x ) dx , f is an even function 0 , f is an odd function\int_{-a}^af(x)dx=\begin{cases} 2\int_0^ af(x)dx,\qquad f is an even function\\ 0,\qquad\qquad\qquad \ \ f is an odd function\end{cases}aaf(x)dx={ 20af(x)dx,f is an even function0,  f is an odd function

Proof: For ∫ − a 0 f ( x ) dx \int_{-a}^0f(x)dxa0f(x)dx,令 x = − t x=-t x=t , then

∫ − a 0 f ( x ) d x = ∫ a 0 f ( − t ) d ( − t ) = − ∫ a 0 f ( − t ) d t = ∫ 0 a f ( − t ) d t = ∫ 0 a f ( − x ) d x \int_{-a}^0f(x)dx=\int_a^0f(-t)d(-t)=-\int_a^0f(-t)dt=\int_0^af(-t)dt=\int_0^af(-x)dx a0f(x)dx=a0f(t)d(t)=a0f(t)dt=0af(t)dt=0af(x)dx

\qquad 所以原式 = ∫ 0 a f ( x ) d x + ∫ − a 0 f ( x ) d x = ∫ 0 a f ( x ) d x + ∫ 0 a f ( − x ) d x =\int_0^af(x)dx+\int_{-a}^0f(x)dx=\int_0^af(x)dx+\int_0^af(-x)dx =0af(x)dx+a0f(x)dx=0af(x)dx+0af(x)dx

= ∫ 0 a [ f ( x ) + f ( − x ) ] d x \qquad\qquad\qquad =\int_0^a[f(x)+f(-x)]dx =0a[f(x)+f(x)]dx

= { 2 ∫ 0 af ( x ) dx , f is an even function 0 , f is an odd function\qquad\qquad\qquad =\begin{cases} 2\int_0^af(x)dx,\qquad f is an even function\ \ 0,\qquad\qquad\qquad \ \ f is an odd function \end{cases}={ 20af(x)dx,f is an even function0,  f is an odd function


periodically

set fff isTTT is a periodic continuous function, then for any real numberaaa , both have

∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int_a^{a+T}f(x)dx=\int_0^Tf(x)dx aa+Tf(x)dx=0Tf(x)dx

证明:
∫ a a + T f ( x ) d x = ∫ a 0 f ( x ) d x + ∫ 0 T f ( x ) d x + ∫ T a + T f ( x ) d x \int_a^{a+T}f(x)dx=\int_a^0f(x)dx+\int_0^Tf(x)dx+\int_T^{a+T}f(x)dx aa+Tf(x)dx=a0f(x)dx+0Tf(x)dx+Ta+Tf(x)dx

\qquad Let x = t + T x = t + Tx=t+T , then

∫ T a + T f ( x ) d x = ∫ 0 a f ( t + T ) d t = ∫ 0 a f ( t ) d t \int_T^{a+T}f(x)dx=\int_0^af(t+T)dt=\int_0^af(t)dt Ta+Tf(x)dx=0af(t+T)dt=0af(t)dt

\qquad so

∫ a a + T f ( x ) d x = ∫ a 0 f ( x ) d x + ∫ 0 T f ( x ) d x + ∫ T a + T f ( x ) d x \qquad\int_a^{a+T}f(x)dx=\int_a^0f(x)dx+\int_0^Tf(x)dx+\int_T^{a+T}f(x)dx aa+Tf(x)dx=a0f(x)dx+0Tf(x)dx+Ta+Tf(x)dx

= ∫ a 0 f ( x ) d x + ∫ 0 T f ( x ) d x + ∫ 0 a f ( x ) d x \qquad\qquad\qquad\qquad =\int_a^0f(x)dx+\int_0^Tf(x)dx+\int_0^af(x)dx =a0f(x)dx+0Tf(x)dx+0af(x)dx

= ∫ 0 T f ( x ) d x \qquad\qquad\qquad\qquad =\int_0^Tf(x)dx =0Tf(x)dx

Guess you like

Origin blog.csdn.net/tanjunming2020/article/details/131116489