[Project] Cell segmentation and counting based on matlab GUI watershed algorithm [Contains Matlab source code 637]

1. Introduction

The watershed algorithm is an image region segmentation method. During the segmentation process, the picture is converted into a grayscale image. Then I will regard the grayscale value as the altitude, and then inject water into the lower point. This interpretation based on topography, we Three points are emphatically considered: the
Insert picture description here
minimum point, which corresponds to the lowest point of a basin. When we drop a drop of water in the basin, the water will eventually converge to this point due to gravity. Note: There may be a minimum surface, and all points in this plane are minimum points.
At other locations in the basin, the droplets from that location will converge to the local minimum.
The edge point of the basin is the junction of the basin and other basins. A drop of water at this point will flow to any basin with equal probability.
Insert picture description here
After understanding the above three points, we start to inject water into the minimum points of the basin, and then as the water injection deepens, each minimum point slowly expands outwards, and then we know that the water in the two basins converges, and the confluence is The watershed we need.

It can be understood intuitively from the figure below. First, these three areas contain minimum points,
Insert picture description here
and then fill them gradually to obtain the watershed (ie the dividing line) to
Insert picture description here
obtain the dividing line to complete the image segmentation:
Insert picture description here

Second, the source code

function varargout = CellCount(varargin)
% CELLCOUNT M-file for CellCount.fig
%      CELLCOUNT, by itself, creates a new CELLCOUNT or raises the existing
%      singleton*.
%
%      H = CELLCOUNT returns the handl e to a new CELLCOUNT or the handle to
%      the existing singleton*.
%
%      CELLCOUNT('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in CELLCOUNT.M with the given input arguments.
%
%      CELLCOUNT('Property','Value',...) creates a new CELLCOUNT or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before CellCount_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to CellCount_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help CellCount

% Last Modified by GUIDE v2.5 01-May-2015 19:43:57

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @CellCount_OpeningFcn, ...
                   'gui_OutputFcn',  @CellCount_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{
    
    1})
    gui_State.gui_Callback = str2func(varargin{
    
    1});
end

if nargout
    [varargout{
    
    1:nargout}] = gui_mainfcn(gui_State, varargin{
    
    :});
else
    gui_mainfcn(gui_State, varargin{
    
    :});
end
% End initialization code - DO NOT EDIT


% --- Executes just before CellCount is made visible.
function CellCount_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to CellCount (see VARARGIN)

% Choose default command line output for CellCount
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes CellCount wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = CellCount_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{
    
    1} = handles.output;



function edit1_Callback(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
%        str2double(get(hObject,'String')) returns contents of edit1 as a double


% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function edit3_Callback(hObject, eventdata, handles)
% hObject    handle to edit3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text
%        str2double(get(hObject,'String')) returns contents of edit3 as a double


% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function edit4_Callback(hObject, eventdata, handles)
% hObject    handle to edit4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit4 as text
%        str2double(get(hObject,'String')) returns contents of edit4 as a double


% --- Executes during object creation, after setting all properties.
function edit4_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function edit5_Callback(hObject, eventdata, handles)
% hObject    handle to edit5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text
%        str2double(get(hObject,'String')) returns contents of edit5 as a double


% --- Executes during object creation, after setting all properties.
function edit5_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function edit6_Callback(hObject, eventdata, handles)
% hObject    handle to edit6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit6 as text
%        str2double(get(hObject,'String')) returns contents of edit6 as a double


% --- Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end


% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton7 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --------------------------------------------------------------------
function file_Callback(hObject, eventdata, handles)
% hObject    handle to file (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --------------------------------------------------------------------
function open_Callback(hObject, eventdata, handles)
% hObject    handle to open (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global im;
[filename,pathname]=uigetfile({
    
    '*.jpg';'*bmp';'*.gif'},'选择图片');
%合成图片路径+文件名
str=[pathname filename];
%读取图片
im=imread(str);
%使用第一个axes
axes(handles.axes0);
imshow(im);


% --------------------------------------------------------------------
function save_Callback(hObject, eventdata, handles)
% hObject    handle to save (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)


% --- Executes on button press in pushbutton8.
function pushbutton8_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton8 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
close(gcf) %关闭当前figure句柄

% --- Executes on button press in pushbutton9.
function pushbutton9_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton9 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global im
global I
global C
%%%%%%%%%%%%%%%%%%
I=im;
R=I(:,:,1);
G=I(:,:,2); 
B=I(:,:,3); 
K=rgb2hsv(I);           
H=K(:,:,1); 
S=K(:,:,2); 
V=K(:,:,3); 
[cenwhite,copywhite]=Kmeans(H,3);           
cenwhite;                       
A=copywhite; 
[m,n]=size(A);          
for i=1:m 
    for j=1:n 
        if A(i,j)==cenwhite(2) 
           A(i,j)=1; 
        else A(i,j)=0; 
        end 
    end 

Three, running results

Insert picture description here

Four, remarks

Complete code or write on behalf of adding QQ 1564658423

Guess you like

Origin blog.csdn.net/TIQCmatlab/article/details/115267339