DL-3利用MNIST搭建神经网络模型(三种方法):1.用CNN 2.用CNN+RNN 3.用自编码网络autoencoder

 
 

Author:吾爱北方的母老虎

原创链接:https://blog.csdn.net/weixin_41010198/article/details/80286216

 
 
import tensorflow as tf
import numpy as np

MNIST的分裂问题

  • 加载数据
  • 构建回归模型
  • 训练模型
  • 模型评估
  • 训练过程的可视化

逻辑回归构架MNIST的简单网络,其实相当于是是一个感知机,只有一个隐藏层

1.加载数据

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/",one_hot=True)

Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting /tmp/data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz

2. 构建回归模型

# 每一张手写数字的大小都是28X28=784 pixel
x = tf.placeholder(tf.float32,[None,784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x,W)+b     #  预测值,定义了一个回归模型

# 定义损失函数和优化器
y_ = tf.placeholder(tf.float32,[None,10])    # 输入真实值的占位符   

# 梯度下降以0.5的学习率最小化交叉熵cross_entrop
cross_entrop = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y,labels=y_)) 
# 采用SGD作为优化器
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entrop)

3. 训练模型

# 这里采用交互式的初始化变量,请忽略其与tf.Session()的区别
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()

# 或者写成下面也是可以的
# init = tf.global_variables_initializer()
# sess.run(inti)


# 下面采用的是批梯度下降的,每次循环遍历100个样例(数据点)  ,来替换之前的占位符
# train 
for _ in range(1000):
    batch_xs,batch_ys = mnist.train.next_batch(100)
    sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
    

4. 评估模型

tf.argmax(vector, 1):返回的是vector中的最大值的索引号,如果vector是一个向量,那就返回一个值,如果是一个矩阵,那就返回一个向量,这个向量的每一个维度都是相对应矩阵行的最大值元素的索引号。

Markdown插入代码的时候用的符号不是单引号,是~键上的那个斜撇号

"  代码块"

``` c 加一个c会有高亮显示

输出结果: [4] [2 1]

# tf.argmax(y,1)返回的是模型对任一输入x预测到的表机制,  tf.argmax(y_,1)代表正确的标记值
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))   # 计算预测值和真实值
# 布尔型转为浮点型,并取平均值得到准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))  


# 计算在测试集上准确率
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels}))

输出准确率为0.9175


下面用卷积神经网络,并结合Tensorboard进行可是化训练MNIST


# 下面的代码在文件 more mnist_with_summaries.py 下面,用more可以查看文件中的内容

"""A simple MNIST classifier which displays summaries in TensorBoard.

This is an unimpressive MNIST model, but it is a good example of using
tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
naming summary tags so that they are grouped meaningfully in TensorBoard.

It demonstrates the functionality of every TensorBoard dashboard.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import sys

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

FLAGS = None


def train():
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir,
                                    fake_data=FLAGS.fake_data)

  sess = tf.InteractiveSession()
  # Create a multilayer model.

  # Input placeholders
  with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y_ = tf.placeholder(tf.int64, [None], name='y-input')

  with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.summary.image('input', image_shaped_input, 10)

  # We can't initialize these variables to 0 - the network will get stuck.
  def weight_variable(shape):
    """Create a weight variable with appropriate initialization."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

  def bias_variable(shape):
    """Create a bias variable with appropriate initialization."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

  def variable_summaries(var):
    """Attach a lot of summaries to a Tensor (for TensorBoard visualization).
        对一个张量添加多个摘要描述
    """
    with tf.name_scope('summaries'):
      mean = tf.reduce_mean(var)
      tf.summary.scalar('mean', mean)
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
      tf.summary.scalar('stddev', stddev)
      tf.summary.scalar('max', tf.reduce_max(var))
      tf.summary.scalar('min', tf.reduce_min(var))
      tf.summary.histogram('histogram', var)

  def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    """Reusable code for making a simple neural net layer.

    It does a matrix multiply, bias add, and then uses ReLU to nonlinearize.
    It also sets up name scoping so that the resultant graph is easy to read,
    and adds a number of summary ops.
    """
    # Adding a name scope ensures logical grouping of the layers in the graph.
    with tf.name_scope(layer_name):
      # This Variable will hold the state of the weights for the layer
      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights)
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases)
      with tf.name_scope('Wx_plus_b'):
        preactivate = tf.matmul(input_tensor, weights) + biases
        tf.summary.histogram('pre_activations', preactivate)
      activations = act(preactivate, name='activation')
      tf.summary.histogram('activations', activations)
      return activations

  hidden1 = nn_layer(x, 784, 500, 'layer1')

  with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    tf.summary.scalar('dropout_keep_probability', keep_prob)
    dropped = tf.nn.dropout(hidden1, keep_prob)

  # Do not apply softmax activation yet, see below.
  y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)

  with tf.name_scope('cross_entropy'):
    # The raw formulation of cross-entropy,
    #
    # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
    #                               reduction_indices=[1]))
    #
    # can be numerically unstable.
    #
    # So here we use tf.losses.sparse_softmax_cross_entropy on the
    # raw logit outputs of the nn_layer above, and then average across
    # the batch.
    with tf.name_scope('total'):
      cross_entropy = tf.losses.sparse_softmax_cross_entropy(
          labels=y_, logits=y)
  tf.summary.scalar('cross_entropy', cross_entropy)

  with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
        cross_entropy)

  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(y, 1), y_)
    with tf.name_scope('accuracy'):
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', accuracy)

  # Merge all the summaries and write them out to
  # /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
  merged = tf.summary.merge_all()
  train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
  test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
  tf.global_variables_initializer().run()

  # Train the model, and also write summaries.
  # Every 10th step, measure test-set accuracy, and write test summaries
  # All other steps, run train_step on training data, & add training summaries

  def feed_dict(train):
    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
    if train or FLAGS.fake_data:
      xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
      k = FLAGS.dropout
    else:
      xs, ys = mnist.test.images, mnist.test.labels
      k = 1.0
    return {x: xs, y_: ys, keep_prob: k}

  for i in range(FLAGS.max_steps):
    if i % 10 == 0:  # Record summaries and test-set accuracy
      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
      test_writer.add_summary(summary, i)
      print('Accuracy at step %s: %s' % (i, acc))
    else:  # Record train set summaries, and train
      if i % 100 == 99:  # Record execution stats
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        summary, _ = sess.run([merged, train_step],
                              feed_dict=feed_dict(True),
                              options=run_options,
                              run_metadata=run_metadata)
        train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
        train_writer.add_summary(summary, i)
        print('Adding run metadata for', i)
      else:  # Record a summary
        summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
        train_writer.add_summary(summary, i)
  train_writer.close()
  test_writer.close()


def main(_):
  if tf.gfile.Exists(FLAGS.log_dir):
    tf.gfile.DeleteRecursively(FLAGS.log_dir)
  tf.gfile.MakeDirs(FLAGS.log_dir)
  train()


if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
                      default=False,
                      help='If true, uses fake data for unit testing.')
  parser.add_argument('--max_steps', type=int, default=1000,
                      help='Number of steps to run trainer.')
  parser.add_argument('--learning_rate', type=float, default=0.001,
                      help='Initial learning rate')
  parser.add_argument('--dropout', type=float, default=0.9,
                      help='Keep probability for training dropout.')
  parser.add_argument(
      '--data_dir',
      type=str,
      default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
                           'tensorflow/mnist/input_data'),
      help='Directory for storing input data')
  parser.add_argument(
      '--log_dir',
      type=str,
      default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
                           'tensorflow/mnist/logs/mnist_with_summaries'),
      help='Summaries log directory')
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)


不知道如何打开TensorFlow,参考我的另外一篇博客:

http://www.cnblogs.com/AlvinSui/p/8982483.html



MNIST的卷积神经网络

1.加载数据

先导入必要的库

mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
trainX,trainY,testX,testY = mnist.train.images,mnist.train.labels,mnist.test.images,mnist.test.labels
print(trainX)
print("--------------------------")
print(trainY)
print("--------------------------")
print(testX)
print("--------------------------")
print(testY)


print("训练数据:",trainX.shape)
print("训练数据标签:",trainY.shape)
print("测试数据:",testX.shape)
print("测试数据标签:",testY.shape)


# trainX trainY  testX testY  是数据的矩阵表现
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]
--------------------------
[[0. 0. 0. ... 1. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 1. 0.]]
--------------------------
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]
--------------------------
[[0. 0. 0. ... 1. 0. 0.]
 [0. 0. 1. ... 0. 0. 0.]
 [0. 1. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]
训练数据: (55000, 784)
训练数据标签: (55000, 10)
测试数据: (10000, 784)
测试数据标签: (10000, 10)

处理输入的数据

把上述的trainX和testX的形状变成[-1,28,28,1],-1表示不考虑输入图片的数量,1是图片的通道数, 所以图片是黑白的如果是RGB数据则通道数则为3

trainX = trainX.reshape(-1,28,28,1)
print("训练数据:",trainX.shape)
testX = testX.reshape(-1,28,28,1)
print("测试数据:",testX.shape)
 
 
X = tf.placeholder("float",[None,28,28,1])    # 此时是不知道输入数据的多少,先定义为None
Y = tf.placeholder("float",[None,10])

初始化权重参数和定义网络结构

  • 3个卷积层
  • 3个池化层
  • 1个全连接层和输出层的NN
def init_weights(shape):
    return tf.Variable(tf.random_normal(shape))
# 初始化权重,卷积核的大小为3x3
w = init_weights([3,3,1,32])    # patch的大小为3x3,输入维度为1,输出维度为32
w2 = init_weights([3,3,32,64])
w3 = init_weights([3,3,64,128])
w4 = init_weights([128*4*4,625])    # 全连接层,输入维度为128*4*4,是上一层输出数据由三维转换为一维,输出维度为625
w_o = init_weights([625,10])  # 输出层维度为625,输出维度为10,代表10类labels
def model(X,w,w2,w3,w4,w_o,p_keep_conv,p_keep_hidden):
    # 第一层卷几层及池化层,最后dropout一些神经元
    l1a = tf.nn.relu(tf.nn.conv2d(X,w,strides=[1,1,1,1],padding="SAME"))
    # l1a shape=(?,28,28,32)
    l1 = tf.nn.max_pool(l1a,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
    # l1 shape(?,14,14,32)
    l1 = tf.nn.dropout(l1,p_keep_conv)
    
    l2a = tf.nn.relu(tf.nn.conv2d(l1,w2,strides=[1,1,1,1],padding="SAME"))
    l2 = tf.nn.max_pool(l2a,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
    l2 = tf.nn.dropout(l2,p_keep_conv)
    
    l3a = tf.nn.relu(tf.nn.conv2d(l2,w3,strides=[1,1,1,1],padding="SAME"))
    l3 = tf.nn.max_pool(l3a,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
    l3 = tf.reshape(l3,[-1,w4.get_shape().as_list()[0]])    # reshape(?,2048)
    l3 = tf.nn.dropout(l3,p_keep_conv)
    
    # 全连接层,最后dropout一些神经元
    l4 = tf.nn.relu(tf.matmul(l3,w4))
    l4 = tf.nn.dropout(l4,p_keep_hidden)
    
    # 输出层
    pyx = tf.matmul(l4,w_o)
    return pyx    #  返回预测值
# 定义dropout的占位符,他表示在一层中有多少比例的神经元被保留了下来,生产网络模型,得到最终的预测值
p_keep_conv = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")
py_x = model(X,w,w2,w3,w4,w_o,p_keep_conv,p_keep_hidden)      # 得到预测值



# 接下来定义损失函数
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x,labels=Y))
train_op = tf.train.RMSPropOptimizer(0.01,0.9).minimize(cost)    # 定义学习率为0.01,衰减值为0.9
predict_op = tf.argmax(py_x,1)




print("训练数据:",trainX.shape)
print("训练数据标签:",trainY.shape)
print("测试数据:",testX.shape)
print("测试数据标签:",testY.shape)


训练模型和评估模型


# 先定义训练时的批次大小和评估时的批次的大小
batch_size = 128
test_size = 256

# 创建一个会话,然后在会话中启动图,开始训练和评估 ,  之前定义的是一些变量,需要在图中进行初始化,然后执行操作op
with tf.Session() as sess:
    initlize = tf.global_variables_initializer()    # 全局进行初始化的时候,一定要记得加括号
    sess.run(initlize)
    for i in range(1000):
        training_batch = zip(range(0,len(trainX),batch_size),
                          range(batch_size,len(trainX)+1,batch_size))    # zip() 函数是把两个列表中对应的元素返回成元祖的形式
        for start ,end in training_batch:
            sess.run(train_op,feed_dict={X:trainX[start:end],Y:trainY[start:end],
                                        p_keep_conv:0.8,p_keep_hidden:0.5})
        test_indices = np.arange(len(testX))
        np.random.shuffle(test_indices)
        test_indices = test_indices[0:test_size]
        
        print(i,np.mean(np.argmax(testY[test_indices],axis=1)==
             sess.run(predict_op,feed_dict={X:testX[test_indices],
                                            p_keep_conv:1.0,
                                            p_keep_hidden:1.0})))
        
        
# 这个就基层卷积网络,尽然训练了两个小时,没有GPU,我只想说,玩个毛线的深度学习

下面是训练结果的部分截图:



搭建一个RNN循环神经网络模型用于MNIST的训练

下面直接给出代码的github地址:

RNN构建MNIST模型

加载数据的方式和上面的CNN网络构建是一样的

训练时间十多分钟,但是CPU的占用率太高,感觉我的电脑有点吃不消呀,最红的测试准确率只有百分之八十多,明显效果不是很好



""" Recurrent Neural Network.
A Recurrent Neural Network (LSTM) implementation example using TensorFlow library.
This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
Links:
    [Long Short Term Memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)
    [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""

from __future__ import print_function

import tensorflow as tf
from tensorflow.contrib import rnn

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

'''
To classify images using a recurrent neural network, we consider every image
row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then
handle 28 sequences of 28 steps for every sample.
'''

# Training Parameters
learning_rate = 0.001
training_steps = 10000
batch_size = 128
display_step = 200

# Network Parameters
num_input = 28 # MNIST data input (img shape: 28*28)
timesteps = 28 # timesteps
num_hidden = 128 # hidden layer num of features
num_classes = 10 # MNIST total classes (0-9 digits)

# tf Graph input
X = tf.placeholder("float", [None, timesteps, num_input])
Y = tf.placeholder("float", [None, num_classes])

# Define weights
weights = {
    'out': tf.Variable(tf.random_normal([num_hidden, num_classes]))
}
biases = {
    'out': tf.Variable(tf.random_normal([num_classes]))
}


def RNN(x, weights, biases):

    # Prepare data shape to match `rnn` function requirements
    # Current data input shape: (batch_size, timesteps, n_input)
    # Required shape: 'timesteps' tensors list of shape (batch_size, n_input)

    # Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
    x = tf.unstack(x, timesteps, 1)

    # Define a lstm cell with tensorflow
    lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)

    # Get lstm cell output
    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)

    # Linear activation, using rnn inner loop last output
    return tf.matmul(outputs[-1], weights['out']) + biases['out']

logits = RNN(X, weights, biases)
prediction = tf.nn.softmax(logits)

# Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    logits=logits, labels=Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)

# Evaluate model (with test logits, for dropout to be disabled)
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

# Start training
with tf.Session() as sess:

    # Run the initializer
    sess.run(init)

    for step in range(1, training_steps+1):
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        # Reshape data to get 28 seq of 28 elements
        batch_x = batch_x.reshape((batch_size, timesteps, num_input))
        # Run optimization op (backprop)
        sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
        if step % display_step == 0 or step == 1:
            # Calculate batch loss and accuracy
            loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
                                                                 Y: batch_y})
            print("Step " + str(step) + ", Minibatch Loss= " + \
                  "{:.4f}".format(loss) + ", Training Accuracy= " + \
                  "{:.3f}".format(acc))

    print("Optimization Finished!")

    # Calculate accuracy for 128 mnist test images
    test_len = 128
    test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
    test_label = mnist.test.labels[:test_len]
    print("Testing Accuracy:", \
        sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))

训练结果的部分截图:


猜你喜欢

转载自blog.csdn.net/weixin_41010198/article/details/80286216
今日推荐