Java多线程-----线程池的使用,原理以及举例实现(三)(四):使用样例及如何配置线程池大小

三.使用示例

  前面我们讨论了关于线程池的实现原理,这一节我们来看一下它的具体使用:

public class Test {
     public static void main(String[] args) {   
         ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 200, TimeUnit.MILLISECONDS,
                 new ArrayBlockingQueue<Runnable>(5));
          
         for(int i=0;i<15;i++){
             MyTask myTask = new MyTask(i);
             executor.execute(myTask);
             System.out.println("线程池中线程数目:"+executor.getPoolSize()+",队列中等待执行的任务数目:"+
             executor.getQueue().size()+",已执行玩别的任务数目:"+executor.getCompletedTaskCount());
         }
         executor.shutdown();
     }
}
 
 
class MyTask implements Runnable {
    private int taskNum;
     
    public MyTask(int num) {
        this.taskNum = num;
    }
     
    @Override
    public void run() {
        System.out.println("正在执行task "+taskNum);
        try {
            Thread.currentThread().sleep(4000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("task "+taskNum+"执行完毕");
    }
}

   执行结果:

正在执行task 0
线程池中线程数目:1,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
线程池中线程数目:2,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 1
线程池中线程数目:3,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 2
线程池中线程数目:4,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 3
线程池中线程数目:5,队列中等待执行的任务数目:0,已执行玩别的任务数目:0
正在执行task 4
线程池中线程数目:5,队列中等待执行的任务数目:1,已执行玩别的任务数目:0
线程池中线程数目:5,队列中等待执行的任务数目:2,已执行玩别的任务数目:0
线程池中线程数目:5,队列中等待执行的任务数目:3,已执行玩别的任务数目:0
线程池中线程数目:5,队列中等待执行的任务数目:4,已执行玩别的任务数目:0
线程池中线程数目:5,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
线程池中线程数目:6,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 10
线程池中线程数目:7,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 11
线程池中线程数目:8,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 12
线程池中线程数目:9,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 13
线程池中线程数目:10,队列中等待执行的任务数目:5,已执行玩别的任务数目:0
正在执行task 14
task 3执行完毕
task 0执行完毕
task 2执行完毕
task 1执行完毕
正在执行task 8
正在执行task 7
正在执行task 6
正在执行task 5
task 4执行完毕
task 10执行完毕
task 11执行完毕
task 13执行完毕
task 12执行完毕
正在执行task 9
task 14执行完毕
task 8执行完毕
task 5执行完毕
task 7执行完毕
task 6执行完毕
task 9执行完毕

  从执行结果可以看出,当线程池中线程的数目大于5时,便将任务放入任务缓存队列里面,当任务缓存队列满了之后,便创建新的线程。如果上面程序中,将for循环中改成执行20个任务,就会抛出任务拒绝异常了。

  不过在java doc中,并不提倡我们直接使用ThreadPoolExecutor,而是使用Executors类中提供的几个静态方法来创建线程池:

Executors.newCachedThreadPool();        //创建一个缓冲池,缓冲池容量大小为Integer.MAX_VALUE
Executors.newSingleThreadExecutor();   //创建容量为1的缓冲池
Executors.newFixedThreadPool(int);    //创建固定容量大小的缓冲池

   下面是这三个静态方法的具体实现;

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}

  从它们的具体实现来看,它们实际上也是调用了ThreadPoolExecutor,只不过参数都已配置好了。

  newFixedThreadPool创建的线程池corePoolSize和maximumPoolSize值是相等的,它使用的LinkedBlockingQueue;

  newSingleThreadExecutor将corePoolSize和maximumPoolSize都设置为1,也使用的LinkedBlockingQueue;

  newCachedThreadPool将corePoolSize设置为0,将maximumPoolSize设置为Integer.MAX_VALUE,使用的SynchronousQueue,也就是说来了任务就创建线程运行,当线程空闲超过60秒,就销毁线程。

  实际中,如果Executors提供的三个静态方法能满足要求,就尽量使用它提供的三个方法,因为自己去手动配置ThreadPoolExecutor的参数有点麻烦,要根据实际任务的类型和数量来进行配置。

  另外,如果ThreadPoolExecutor达不到要求,可以自己继承ThreadPoolExecutor类进行重写。

四.如何合理配置线程池的大小

  本节来讨论一个比较重要的话题:如何合理配置线程池大小,仅供参考。

  一般需要根据任务的类型来配置线程池大小:

  如果是CPU密集型任务,就需要尽量压榨CPU,参考值可以设为 NCPU+1

  如果是IO密集型任务,参考值可以设置为2*NCPU

  当然,这只是一个参考值,具体的设置还需要根据实际情况进行调整,比如可以先将线程池大小设置为参考值,再观察任务运行情况和系统负载、资源利用率来进行适当调整。

猜你喜欢

转载自blog.csdn.net/qq_36186690/article/details/82940994