向量数据库:faiss的常用三种数据索引方式(IndexFlatL2,IndexIVFFlat,IndexIVFPQ)的使用和持久化+索引融合的实现及库函数解读

常用的三种索引方式

        Faiss 中有常用的三种索引方式:IndexFlatL2IndexIVFFlatIndexIVFPQ

1.IndexFlatL2 - 暴力检索L2:

  • 使用欧氏距离(L2)进行精确检索。
  • 适用于较小规模的数据集,采用暴力检索的方式,即计算查询向量与所有数据库向量之间的距离,然后返回相似度最高的前 k 个向量。
import faiss

d = 200  # 向量维度
index = faiss.IndexFlatL2(d)  # 构建索引
data = ...  # 添加数据
index.add(data)  # 添加数据到索引
k = 500  # 返回结果个数
query = ...  # 查询向量
dis, ind = index.search(query, k)  # 查询相似内容

2. IndexIVFFlat - 倒排索引,加速:

  • 使用倒排索引结构,将数据集划分为多个聚类空间,以加速搜索。
  • 在查询阶段,首先定位到可能包含相似向量的聚类中心,然后在该聚类中心附近进行精确搜索。
import faiss

d = 200  # 向量维度
nlist = 10000  # 聚类空间
k = 500  # 返回结果个数
quantizer = faiss.IndexFlatL2(d)  # 量化器
index = faiss.IndexIVFFlat(quantizer, d, nlist)  # 构建索引
index.nprobe = 20  # 查找聚类中心的个数
index.train(data)  # 训练
index.add(data)  # 添加数据到索引
dis, ind = index.search(query, k)  # 查询相似内容

3. IndexIVFPQ - 省空间超快:

  • 使用 Product Quantization(PQ)技术进行有损压缩,以节省内存。
  • 在查询阶段,返回近似结果。
import faiss

d = 200  # 向量维度
m = 8  # 空间拆分
nlist = 10000  # 聚类空间
k = 500  # 返回结果个数
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(quantizer, d, nlist, m, 8)  # 每个向量用8 bits 编码
index.nprobe = 20  # 查找聚类中心的个数
index.train(data)  # 训练
index.add(data)  # 添加数据到索引
dis, ind = index.search(query, k)  # 查询相似内容
// https://github1s.com/facebookresearch/faiss/blob/HEAD/tutorial/python/3-IVFPQ.py#L6-L32
import numpy as np

d = 64                           # dimension
nb = 100000                      # database size
nq = 10000                       # nb of queries
np.random.seed(1234)             # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.

import faiss

nlist = 100
m = 8
k = 4
quantizer = faiss.IndexFlatL2(d)  # this remains the same
index = faiss.IndexIVFPQ(quantizer, d, nlist, m, 8)
                                  # 8 specifies that each sub-vector is encoded as 8 bits
index.train(xb)
index.add(xb)
D, I = index.search(xb[:5], k) # sanity check
print(I)
print(D)
index.nprobe = 10              # make comparable with experiment above
D, I = index.search(xq, k)     # search
print(I[-5:])

这些索引方法在不同场景下有不同的优势,你可以根据数据集大小、内存限制和搜索速度的需求来选择适当的索引类型。

  • Product quantization in Faiss and from scratch
  • 乘积量化背后的主要思想是,将采用高维嵌入(其中每个元素都是浮点数)转换为更小的向量,其元素是无符号整数,具体位数通常是八位或一个字节。        
  • 为了实现这一点,我们首先将向量分成 m 段,然后将每个段映射到某个固定整数。对于 m 个分段中的每个分段都有 m 个单独的估计器,如果我们假设这些估计器已经经过训练,我们可以简单地使用它们将给定分段分配给集群 id,并且该集群 id 是我们将用来表示的数字。

在这里插入图片描述

保存和加载索引

        faiss 提供了保存和加载索引的功能,可以将索引保存为文件以便后续重用。这对于避免重新构建索引,以及在不同的程序之间共享索引非常有用。

import faiss
import numpy as np

# 创建一些随机数据
np.random.seed(42)
data = np.random.rand(10, 5).astype('float32')

# 创建一个平面索引
index = faiss.IndexFlatL2(5)
index.add(data)

# 保存索引到文件
faiss.write_index(index, "my_index.index")
import faiss
import numpy as np
# 加载索引
loaded_index = faiss.read_index("my_index.index")

# 进行相似性搜索
query_vector = np.random.rand(1, 5).astype('float32')
k = 3
D, I = loaded_index.search(query_vector, k)

print("相似度最高的{}个向量的索引: {}".format(k, I))
print("对应的相似度分数: {}".format(D))

清空一个index中的所有数据

import faiss

# 假设你已经创建了一个索引 index
# 这里以 IndexFlatL2 为例,具体类型根据你的实际情况选择
index = faiss.IndexFlatL2(d=128)

# 添加一些数据到索引中
data_to_add = [...]  # 你的数据
index.add(data_to_add)

# 打印添加数据前的索引大小
print("索引大小 (添加数据前):", index.ntotal)

# 清空索引中的所有数据
index.reset()

# 打印清空数据后的索引大小
print("索引大小 (清空数据后):", index.ntotal)

merge

merge_from实现(python)

# 这个例子好像有问题
import faiss

# 创建两个示例 IndexIVFPQ 索引
dimension = 64
nlist = 100
nprobe = 32
code_size = 8

# 进行相似性搜索的设置
query_vector = faiss.rand((1, dimension)).astype('float32')
k = 3

quantizer = faiss.IndexFlatL2(dimension)
index1 = faiss.IndexIVFPQ(quantizer, dimension, nlist, nprobe, 8)  # 每个向量用8 bits 编码
index2 = faiss.IndexIVFPQ(quantizer, dimension, nlist, nprobe, 8)  # 每个向量用8 bits 编码
# 向索引添加一些示例数据
data1 = faiss.rand((10000, dimension)).astype('float32')
data2 = faiss.rand((50000, dimension)).astype('float32')

index1.train(data1)
index1.add(data1)
D, I = index1.search(query_vector, k)
print("index1:相似度最高的{}个向量的索引: {}".format(k, I))
print("index1:对应的相似度分数: {}".format(D))
# print("Retrieved Vectors:", data1[I[0]])

index2.train(data2)
index2.add(data2)
D, I = index2.search(query_vector, k)
print("index2:相似度最高的{}个向量的索引: {}".format(k, I))
print("index2:对应的相似度分数: {}".format(D))
# print("Retrieved Vectors:", data2[I[0]])

# 打印每个索引的总数
print("Index 1 total:", index1.ntotal)
print("Index 2 total:", index2.ntotal)

# 创建一个新的索引,然后将两个索引合并到新的索引中
merged_index = faiss.IndexIVFPQ(quantizer, dimension, nlist, nprobe, 8)
merged_index.merge_from(index1,add_id=True)
merged_index.merge_from(index2,add_id=True)

# 打印合并后的总数
print("Merged Index total:", index1.ntotal)
print("Merged Index total:", index1.ntotal)
print("Merged Index total:", merged_index.ntotal)

D, I = merged_index.search(query_vector, k)
print("merged_index合并后:相似度最高的{}个向量的索引: {}".format(k, I))
print("merged_index合并后:对应的相似度分数: {}".format(D))
# index1:相似度最高的3个向量的索引: [[   0 4722 8480]]
# index1:对应的相似度分数: [[0.02087733 6.411026   7.01804   ]]
# index2:相似度最高的3个向量的索引: [[    0   512 33625]]
# index2:对应的相似度分数: [[0.02118337 5.254285   5.6290326 ]]
# Index 1 total: 10000
# Index 2 total: 50000
# Merged Index total: 0
# Merged Index total: 0
# Merged Index total: 60000
# merged_index合并后:相似度最高的3个向量的索引: [[63 70  1]]
# merged_index合并后:对应的相似度分数: [[4.093991 4.093991 4.093991]]
  • merge_from遍历 PDF 列表。首次创建 Faiss 索引,然后合并其余索引。
// https://stackoverflow.com/questions/76421045/how-to-combine-multiple-faiss-indexes-into-one-to-get-a-single-retriever
pdfs = [help_doc_name, newsletters_doc_name, supportCases_doc_name]

for index, pdf in enumerate(pdfs):
   content = load_pdf(pdf)
   if index == 0:
       faiss_index = FAISS.from_documents(content, OpenAIEmbeddings())
   else:
      faiss_index_i = FAISS.from_documents(content, OpenAIEmbeddings())
      faiss_index.merge_from(faiss_index_i)

faiss_index.save_local(index_path)

retriever = faiss_index.as_retriever(
        search_type="similarity", search_kwargs={
    
    "k": 3}
    )
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=retriever,
    verbose=False
)

另一种实现方式(python)

// https://gist.github.com/mdouze/586746666ef493dbc363aef9266bb990
import numpy as np
import faiss

def merge_idmap_flat(a, b): 
    a_flat = faiss.downcast_index(a.index)
    b_flat = faiss.downcast_index(b.index)    
    ab_flat = faiss.IndexFlatL2(a.d)
    faiss.copy_array_to_vector(
        np.hstack((
            faiss.vector_to_array(a_flat.xb), 
            faiss.vector_to_array(b_flat.xb)
        )), 
        ab_flat.xb
    )
    ab = faiss.IndexIDMap(ab_flat)
    ab.referenced = ab_flat # avoid deallocation, not needed in 1.4.0
    faiss.copy_array_to_vector(
        np.hstack((
            faiss.vector_to_array(a.id_map), 
            faiss.vector_to_array(b.id_map)
        )), 
        ab.id_map 
    )
    ab_flat.ntotal = ab.ntotal = a.ntotal + b.ntotal
    return ab

code实现(官方库的代码实现逻辑)

  • 使用python定位到最深的实现为IndexIVF类的merge_from方法。这个函数很可能是 faiss 库中的底层实现,通过 swig 工具将 C/C++ 代码包装成 Python 接口。
    在这里插入图片描述

  • 再TEST宏处进入测试

#include <gtest/gtest.h>  // https://github1s.com/facebookresearch/faiss/blob/HEAD/tests/test_merge.cpp#L14
// now use ondisk specific merge https://github1s.com/facebookresearch/faiss/blob/HEAD/tests/test_merge.cpp#L234-L247
TEST(MERGE, merge_flat_ondisk_2) {
    
    
    faiss::IndexShards index_shards(d, false, false);
    index_shards.own_indices = true;

    for (int i = 0; i < nindex; i++) {
    
    
        index_shards.add_shard(
                new faiss::IndexIVFFlat(&cd.quantizer, d, nlist));
    }
    EXPECT_TRUE(index_shards.is_trained);
    index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
    int ndiff = compare_merged(&index_shards, false, false);
    EXPECT_GE(0, ndiff);
}
  • 调用compare_merged
// https://github1s.com/facebookresearch/faiss/blob/HEAD/tests/test_merge.cpp#L88-L144
/// perform a search on shards, then merge and search again and
/// compare results.

// 定义一个函数,用于在索引分片上进行搜索,合并索引,再次搜索,并比较结果。
int compare_merged(
        faiss::IndexShards* index_shards,
        bool shift_ids,
        bool standard_merge = true) {
    
    
    // 定义用于存储搜索结果的数组
    std::vector<idx_t> refI(k * nq);
    std::vector<float> refD(k * nq);

    // 在索引分片上执行搜索操作,将结果存储在 refD 和 refI 数组中
    index_shards->search(nq, cd.queries.data(), k, refD.data(), refI.data());
    
    Tempfilename filename;// 创建一个临时文件名对象

    // 定义新的搜索结果数组
    std::vector<idx_t> newI(k * nq);
    std::vector<float> newD(k * nq);

    // 根据 standard_merge 的值,选择标准合并方式还是非标准合并方式
    if (standard_merge) {
    
    
        // 标准合并方式
        for (int i = 1; i < nindex; i++) {
    
    
            faiss::ivflib::merge_into(// 将所有索引分片合并到第一个分片中
                    index_shards->at(0), index_shards->at(i), shift_ids);
        }

        // 同步索引以确保合并的变化得以反映
        index_shards->syncWithSubIndexes();
    } else {
    
    
        // 非标准合并方式
        std::vector<const faiss::InvertedLists*> lists;
        faiss::IndexIVF* index0 = nullptr;
        size_t ntotal = 0;

        // 收集所有分片的倒排列表
        for (int i = 0; i < nindex; i++) {
    
    
            auto index_ivf =
                    dynamic_cast<faiss::IndexIVF*>(index_shards->at(i));
            assert(index_ivf);
            if (i == 0) {
    
    
                index0 = index_ivf;
            }
            lists.push_back(index_ivf->invlists);
            ntotal += index_ivf->ntotal;
        }

        // 创建一个新的 OnDiskInvertedLists,并将所有倒排列表合并到其中
        auto il = new faiss::OnDiskInvertedLists(
                index0->nlist, index0->code_size, filename.c_str());

        il->merge_from(lists.data(), lists.size());

        // 替换第一个分片的倒排列表
        index0->replace_invlists(il, true);
        index0->ntotal = ntotal;
    }

    // 仅在第一个索引分片上执行搜索操作
    index_shards->at(0)->search(
            nq, cd.queries.data(), k, newD.data(), newI.data());

    // 比较搜索结果,计算不同的数量
    size_t ndiff = 0;
    for (size_t i = 0; i < k * nq; i++) {
    
    
        if (refI[i] != newI[i]) {
    
    
            ndiff++;
        }
    }
    
    // 返回不同的数量
    return ndiff;
}
void merge_into(faiss::Index* index0, faiss::Index* index1, bool shift_ids) {
    
    
    // 检查两个索引是否兼容,如果不兼容将引发异常
    check_compatible_for_merge(index0, index1);

    // 将传入的索引强制转换为 IndexIVF 类型
    IndexIVF* ivf0 = extract_index_ivf(index0);
    IndexIVF* ivf1 = extract_index_ivf(index1);

    // 调用 IndexIVF 类的 merge_from 方法,将 index1 合并到 index0
    ivf0->merge_from(*ivf1, shift_ids ? ivf0->ntotal : 0);

    // 对于 IndexPreTransform 等情况,更新索引总数
    index0->ntotal = ivf0->ntotal;
    index1->ntotal = ivf1->ntotal;
}

  • IndexIVF 的类型定义如下,它继承自两个类:Index 和 IndexIVFInterface。第396行为函数声明:virtual void merge_from(Index& otherIndex, idx_t add_id) override;,它的实际实现是通过
/** Index based on a inverted file (IVF)
 *
 * In the inverted file, the quantizer (an Index instance) provides a
 * quantization index for each vector to be added. The quantization
 * index maps to a list (aka inverted list or posting list), where the
 * id of the vector is stored.
 *
 * The inverted list object is required only after trainng. If none is
 * set externally, an ArrayInvertedLists is used automatically.
 *
 * At search time, the vector to be searched is also quantized, and
 * only the list corresponding to the quantization index is
 * searched. This speeds up the search by making it
 * non-exhaustive. This can be relaxed using multi-probe search: a few
 * (nprobe) quantization indices are selected and several inverted
 * lists are visited.
 *
 * Sub-classes implement a post-filtering of the index that refines
 * the distance estimation from the query to databse vectors.
 */
struct IndexIVF : Index, IndexIVFInterface {
    
    
    /// Access to the actual data
    InvertedLists* invlists = nullptr; // #include <faiss/invlists/InvertedLists.h>
    bool own_invlists = false;

    size_t code_size = 0; ///< code size per vector in bytes

    /** Parallel mode determines how queries are parallelized with OpenMP
     *
     * 0 (default): split over queries
     * 1: parallelize over inverted lists
     * 2: parallelize over both
     * 3: split over queries with a finer granularity
     *
     * PARALLEL_MODE_NO_HEAP_INIT: binary or with the previous to
     * prevent the heap to be initialized and finalized
     */
    int parallel_mode = 0;
    const int PARALLEL_MODE_NO_HEAP_INIT = 1024;

    /** optional map that maps back ids to invlist entries. This
     *  enables reconstruct() */
    DirectMap direct_map;

    /// do the codes in the invlists encode the vectors relative to the
    /// centroids?
    bool by_residual = true;

    /** The Inverted file takes a quantizer (an Index) on input,
     * which implements the function mapping a vector to a list
     * identifier.
     */
    IndexIVF(
            Index* quantizer,
            size_t d,
            size_t nlist,
            size_t code_size,
            MetricType metric = METRIC_L2);

    void reset() override;

    /// Trains the quantizer and calls train_encoder to train sub-quantizers
    void train(idx_t n, const float* x) override;

    /// Calls add_with_ids with NULL ids
    void add(idx_t n, const float* x) override;

    /// default implementation that calls encode_vectors
    void add_with_ids(idx_t n, const float* x, const idx_t* xids) override;

    /** Implementation of vector addition where the vector assignments are
     * predefined. The default implementation hands over the code extraction to
     * encode_vectors.
     *
     * @param precomputed_idx    quantization indices for the input vectors
     * (size n)
     */
    virtual void add_core(
            idx_t n,
            const float* x,
            const idx_t* xids,
            const idx_t* precomputed_idx);

    /** Encodes a set of vectors as they would appear in the inverted lists
     *
     * @param list_nos   inverted list ids as returned by the
     *                   quantizer (size n). -1s are ignored.
     * @param codes      output codes, size n * code_size
     * @param include_listno
     *                   include the list ids in the code (in this case add
     *                   ceil(log8(nlist)) to the code size)
     */
    virtual void encode_vectors(
            idx_t n,
            const float* x,
            const idx_t* list_nos,
            uint8_t* codes,
            bool include_listno = false) const = 0;

    /** Add vectors that are computed with the standalone codec
     *
     * @param codes  codes to add size n * sa_code_size()
     * @param xids   corresponding ids, size n
     */
    void add_sa_codes(idx_t n, const uint8_t* codes, const idx_t* xids);

    /** Train the encoder for the vectors.
     *
     * If by_residual then it is called with residuals and corresponding assign
     * array, otherwise x is the raw training vectors and assign=nullptr */
    virtual void train_encoder(idx_t n, const float* x, const idx_t* assign);

    /// can be redefined by subclasses to indicate how many training vectors
    /// they need
    virtual idx_t train_encoder_num_vectors() const;

    void search_preassigned(
            idx_t n,
            const float* x,
            idx_t k,
            const idx_t* assign,
            const float* centroid_dis,
            float* distances,
            idx_t* labels,
            bool store_pairs,
            const IVFSearchParameters* params = nullptr,
            IndexIVFStats* stats = nullptr) const override;

    void range_search_preassigned(
            idx_t nx,
            const float* x,
            float radius,
            const idx_t* keys,
            const float* coarse_dis,
            RangeSearchResult* result,
            bool store_pairs = false,
            const IVFSearchParameters* params = nullptr,
            IndexIVFStats* stats = nullptr) const override;

    /** assign the vectors, then call search_preassign */
    void search(
            idx_t n,
            const float* x,
            idx_t k,
            float* distances,
            idx_t* labels,
            const SearchParameters* params = nullptr) const override;

    void range_search(
            idx_t n,
            const float* x,
            float radius,
            RangeSearchResult* result,
            const SearchParameters* params = nullptr) const override;

    /** Get a scanner for this index (store_pairs means ignore labels)
     *
     * The default search implementation uses this to compute the distances
     */
    virtual InvertedListScanner* get_InvertedListScanner(
            bool store_pairs = false,
            const IDSelector* sel = nullptr) const;

    /** reconstruct a vector. Works only if maintain_direct_map is set to 1 or 2
     */
    void reconstruct(idx_t key, float* recons) const override;

    /** Update a subset of vectors.
     *
     * The index must have a direct_map
     *
     * @param nv     nb of vectors to update
     * @param idx    vector indices to update, size nv
     * @param v      vectors of new values, size nv*d
     */
    virtual void update_vectors(int nv, const idx_t* idx, const float* v);

    /** Reconstruct a subset of the indexed vectors.
     *
     * Overrides default implementation to bypass reconstruct() which requires
     * direct_map to be maintained.
     *
     * @param i0     first vector to reconstruct
     * @param ni     nb of vectors to reconstruct
     * @param recons output array of reconstructed vectors, size ni * d
     */
    void reconstruct_n(idx_t i0, idx_t ni, float* recons) const override;

    /** Similar to search, but also reconstructs the stored vectors (or an
     * approximation in the case of lossy coding) for the search results.
     *
     * Overrides default implementation to avoid having to maintain direct_map
     * and instead fetch the code offsets through the `store_pairs` flag in
     * search_preassigned().
     *
     * @param recons      reconstructed vectors size (n, k, d)
     */
    void search_and_reconstruct(
            idx_t n,
            const float* x,
            idx_t k,
            float* distances,
            idx_t* labels,
            float* recons,
            const SearchParameters* params = nullptr) const override;

    /** Similar to search, but also returns the codes corresponding to the
     * stored vectors for the search results.
     *
     * @param codes      codes (n, k, code_size)
     * @param include_listno
     *                   include the list ids in the code (in this case add
     *                   ceil(log8(nlist)) to the code size)
     */
    void search_and_return_codes(
            idx_t n,
            const float* x,
            idx_t k,
            float* distances,
            idx_t* labels,
            uint8_t* recons,
            bool include_listno = false,
            const SearchParameters* params = nullptr) const;

    /** Reconstruct a vector given the location in terms of (inv list index +
     * inv list offset) instead of the id.
     *
     * Useful for reconstructing when the direct_map is not maintained and
     * the inv list offset is computed by search_preassigned() with
     * `store_pairs` set.
     */
    virtual void reconstruct_from_offset(
            int64_t list_no,
            int64_t offset,
            float* recons) const;

    /// Dataset manipulation functions

    size_t remove_ids(const IDSelector& sel) override;

    void check_compatible_for_merge(const Index& otherIndex) const override;

    virtual void merge_from(Index& otherIndex, idx_t add_id) override;

    // returns a new instance of a CodePacker
    virtual CodePacker* get_CodePacker() const;

    /** copy a subset of the entries index to the other index
     * see Invlists::copy_subset_to for the meaning of subset_type
     */
    virtual void copy_subset_to(
            IndexIVF& other,
            InvertedLists::subset_type_t subset_type,
            idx_t a1,
            idx_t a2) const;

    ~IndexIVF() override;

    size_t get_list_size(size_t list_no) const {
    
    
        return invlists->list_size(list_no);
    }

    /// are the ids sorted?
    bool check_ids_sorted() const;

    /** initialize a direct map
     *
     * @param new_maintain_direct_map    if true, create a direct map,
     *                                   else clear it
     */
    void make_direct_map(bool new_maintain_direct_map = true);

    void set_direct_map_type(DirectMap::Type type);

    /// replace the inverted lists, old one is deallocated if own_invlists
    void replace_invlists(InvertedLists* il, bool own = false);

    /* The standalone codec interface (except sa_decode that is specific) */
    size_t sa_code_size() const override;
    void sa_encode(idx_t n, const float* x, uint8_t* bytes) const override;

    IndexIVF();
};
merge_from的最终实现
// https://github1s.com/facebookresearch/faiss/blob/HEAD/faiss/invlists/OnDiskInvertedLists.cpp#L569-L636
// 从一组倒排列表中合并数据到当前 OnDiskInvertedLists 对象
size_t OnDiskInvertedLists::merge_from(
        const InvertedLists** ils,
        int n_il,
        bool verbose) {
    
    
    // 确保当前 InvertedLists 对象为空
    FAISS_THROW_IF_NOT_MSG(
            totsize == 0, "works only on an empty InvertedLists");

    // 记录每个倒排列表的大小
    std::vector<size_t> sizes(nlist);

    // 遍历所有输入的倒排列表
    for (int i = 0; i < n_il; i++) {
    
    
        const InvertedLists* il = ils[i];
        // 确保倒排列表的维度和码的大小与当前对象一致
        FAISS_THROW_IF_NOT(il->nlist == nlist && il->code_size == code_size);

        // 统计每个列表的大小
        for (size_t j = 0; j < nlist; j++) {
    
    
            sizes[j] += il->list_size(j);
        }
    }

    size_t cums = 0;
    size_t ntotal = 0;

    // 根据统计的列表大小更新当前对象的结构
    for (size_t j = 0; j < nlist; j++) {
    
    
        ntotal += sizes[j];
        lists[j].size = 0;
        lists[j].capacity = sizes[j];
        lists[j].offset = cums;
        cums += lists[j].capacity * (sizeof(idx_t) + code_size);
    }

    // 更新当前对象的总大小
    update_totsize(cums);

    size_t nmerged = 0;
    double t0 = getmillisecs(), last_t = t0;

    // 并行处理每个列表
#pragma omp parallel for // OpenMP在循环中实现并行化的预编译关键字(Preprocessor Directives),表示在其后的 for 循环应该在多个线程中并行执行
    for (size_t j = 0; j < nlist; j++) {
    
    
        List& l = lists[j];
        // 遍历所有输入的倒排列表
        for (int i = 0; i < n_il; i++) {
    
    
            const InvertedLists* il = ils[i];
            // 获取当前列表在输入倒排列表中的条目数
            size_t n_entry = il->list_size(j);
            // 更新当前列表的大小和内容
            l.size += n_entry;
            update_entries(
                    j,
                    l.size - n_entry,
                    n_entry,
                    ScopedIds(il, j).get(),//根据https://github1s.com/facebookresearch/faiss/blob/HEAD/faiss/invlists/InvertedLists.h#L165-L205的定义看,应该是指向倒排表的指针
                    ScopedCodes(il, j).get());
        }
        // 确保当前列表的大小与容量相等
        assert(l.size == l.capacity);

        // 在 verbose 模式下,输出合并的进度信息
        if (verbose) {
    
    
#pragma omp critical
            {
    
    
                nmerged++;
                double t1 = getmillisecs();
                if (t1 - last_t > 500) {
    
    
                    printf("merged %zd lists in %.3f s\r",
                           nmerged,
                           (t1 - t0) / 1000.0);
                    fflush(stdout);
                    last_t = t1;
                }
            }
        }
    }
    // 输出合并完成的信息
    if (verbose) {
    
    
        printf("\n");
    }

    // 返回合并后的总条目数
    return ntotal;
}

最终的更新实现
void OnDiskInvertedLists::update_entries(
        size_t list_no, // 表示要更新的倒排列表的编号。
        size_t offset, // 表示要更新的列表中的起始位置。
        size_t n_entry,// 表示要更新的条目数。
        const idx_t* ids_in, // 表示输入的新 ids 数组的指针。
        const uint8_t* codes_in) {
    
    // 表示输入的新 codes 数组的指针。
    // 检查是否为只读状态,如果是,抛出异常
    FAISS_THROW_IF_NOT(!read_only);

    // 如果要更新的条目数为 0,则直接返回
    if (n_entry == 0)
        return;

    // 获取当前列表的引用
    const List& l = lists[list_no];

    // 确保更新的范围在合理的范围内
    assert(n_entry + offset <= l.size);

    // 获取当前列表的 ids 数组的指针
    idx_t* ids = const_cast<idx_t*>(get_ids(list_no));

    // 将输入的 ids_in 复制到列表的相应位置
    memcpy(ids + offset, ids_in, sizeof(ids_in[0]) * n_entry);

    // 获取当前列表的 codes 数组的指针
    uint8_t* codes = const_cast<uint8_t*>(get_codes(list_no));

    // 将输入的 codes_in 复制到列表的相应位置
    memcpy(codes + offset * code_size, codes_in, code_size * n_entry);
}

更多功能

https://github1s.com/facebookresearch/faiss-main/tests$ ls
CMakeLists.txt            test_binary_io.py           test_cppcontrib_sa_decode.cpp   test_factory.py                  test_index_binary.py     test_local_search_quantizer.py  test_omp_threads_py.py    test_pq_encoding.cpp        test_search_params.py
common_faiss_tests.py     test_build_blocks.py        test_cppcontrib_uintreader.cpp  test_fast_scan_ivf.py            test_index_composite.py  test_lowlevel_ivf.cpp           test_ondisk_ivf.cpp       test_product_quantizer.py   test_simdlib.cpp
test_approx_topk.cpp      test_clone.py               test_dealloc_invlists.cpp       test_fast_scan.py                test_index.py            test_mem_leak.cpp               test_oom_exception.py     test_RCQ_cropping.cpp       test_sliding_ivf.cpp
test_autotune.py          test_clustering.py          test_distances_simd.cpp         test_heap.cpp                    test_io.py               test_merge.cpp                  test_pairs_decoding.cpp   test_referenced_objects.py  test_standalone_codec.py
test_binary_factory.py    test_code_distance.cpp      test_documentation.py           test_hnsw.cpp                    test_ivflib.py           test_merge_index.py             test_params_override.cpp  test_refine.py              test_threaded_index.cpp
test_binary_flat.cpp      test_contrib.py             test_doxygen_documentation.py   test_index_accuracy.py           test_ivfpq_codec.cpp     test_meta_index.py              test_partitioning.cpp     test_residual_quantizer.py  test_transfer_invlists.cpp
test_binary_hashindex.py  test_contrib_with_scipy.py  test_extra_distances.py         test_index_binary_from_float.py  test_ivfpq_indexing.cpp  test_omp_threads.cpp            test_partition.py         test_rowwise_minmax.py      torch_test_contrib.py

缺点

  • 不支持动态更新:FAISS构建的索引不支持动态添加、删除和更新向量。如果数据发生改变,通常需要重新构建整个索引。
  • 不支持分布式存储和查询(有第三方库实现)
  • 单机可能出现内存不足问题:
Traceback (most recent call last):
  File "*****.py", line 199, in <module>
    main()
  File "*****.py", line 93, in main
    train(config, train_loader, model, losses, optimizer, 0, logger)
  File "*****.py", line 164, in train
    index.add(image_embeds.view(1,-1).detach().cpu().numpy())
  File "/home/ubuntu/anaconda3/envs/***/lib/python3.8/site-packages/faiss/__init__.py", line 194, in replacement_add
    self.add_c(n, swig_ptr(x))
  File "/home/ubuntu/anaconda3/envs/***/lib/python3.8/site-packages/faiss/swigfaiss_avx2.py", line 2166, in add
    return _swigfaiss_avx2.IndexFlat_add(self, n, x)
MemoryError: std::bad_alloc

cg

猜你喜欢

转载自blog.csdn.net/ResumeProject/article/details/135350945
今日推荐