【算法题】动态规划基础阶段之斐波那契数、使用最小花费爬、除数博弈、第 N 个泰波那契数

前言

动态规划(Dynamic Programming,简称 DP)是一种解决多阶段决策过程最优化问题的方法。它是一种将复杂问题分解成重叠子问题的策略,通过维护每个子问题的最优解来推导出问题的最优解。

动态规划的主要思想是利用已求解的子问题的最优解来推导出更大问题的最优解,从而避免了重复计算。因此,动态规划通常采用自底向上的方式进行求解,先求解出小规模的问题,然后逐步推导出更大规模的问题,直到求解出整个问题的最优解。

动态规划通常包括以下几个基本步骤:

  1. 定义状态:将问题划分为若干个子问题,并定义状态表示子问题的解;
  2. 定义状态转移方程:根据子问题之间的关系,设计状态转移方程,即如何从已知状态推导出未知状态的计算过程;
  3. 确定初始状态:定义最小的子问题的解;
  4. 自底向上求解:按照状态转移方程,计算出所有状态的最优解;
  5. 根据最优解构造问题的解。

动态规划可以解决许多实际问题,例如最短路径问题、背包问题、最长公共子序列问题、编辑距离问题等。同时,动态规划也是许多其他算法的核心思想,例如分治算法、贪心算法等。

动态规划是一种解决多阶段决策过程最优化问题的方法,它将复杂问题分解成重叠子问题,通过维护每个子问题的最优解来推导出问题的最优解。动态规划包括定义状态、设计状态转移方程、确定初始状态、自底向上求解和构造问题解等步骤。动态规划可以解决许多实际问题,也是其他算法的核心思想之一。

一、斐波那契数

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

来源:力扣(LeetCode)。

1.1、思路

斐波那契数的边界条件是 F(0)=0 和 F(1)=1。当 n>1 时,每一项的和都等于前两项的和,因此有如下递推关系:
F(n)=F(n−1)+F(n−2)

由于斐波那契数存在递推关系,因此可以使用动态规划求解。动态规划的状态转移方程即为上述递推关系,边界条件为 F(0) 和 F(1)。

根据状态转移方程和边界条件,可以得到时间复杂度和空间复杂度都是 O(n) 的实现。由于 F(n) 只和
F(n−1) 与 F(n−2) 有关,因此可以使用「滚动数组思想」把空间复杂度优化成 O(1)。

1.2、代码实现

方式一:递归。

class Solution {
    
    
public:
    int fib(int n) {
    
    
        if(n<2)
            return n;
        return fib(n-1)+fib(n-2);
    }
};

缺点:容易超时,时间复杂度高。

方式二:迭代。

class Solution {
    
    
public:
    int fib(int n) {
    
    
        if(n<2)
            return n;
        int pre1=0,pre2=1,cur=0;
        for(int i=2;i<=n;i++)
        {
    
    
            cur=pre1+pre2;
            pre1=pre2;
            pre2=cur;
        }
        return cur;
    }
};

时间复杂度:O(n)。

空间复杂度:O(1)。

二、除数博弈

爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 n 。在每个玩家的回合,玩家需要执行以下操作:

选出任一 x,满足 0 < x < n 且 n % x == 0 。
用 n - x 替换黑板上的数字 n 。
如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 true 。假设两个玩家都以最佳状态参与游戏。

示例 1:

输入:n = 2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。

示例 2:

输入:n = 3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。

来源:力扣(LeetCode)。

2.1、思路

Alice 处在 n=k 的状态时,他(她)做一步操作,必然使得 Bob 处于 n=m(m<k) 的状态。因此只要看是否存在一个 m 是必败的状态,那么 Alice 直接执行对应的操作让当前的数字变成 m,Alice 就必胜了,如果没有任何一个是必败的状态的话,说明 Alice 无论怎么进行操作,最后都会让 Bob 处于必胜的状态,此时 Alice 是必败的。

结合以上定义 f[i] 表示当前数字 i 的时候先手是处于必胜态还是必败态,true 表示先手必胜,false 表示先手必败,从前往后递推,根据我们上文的分析,枚举 (0,i) 中 i 的因数 j,看是否存在 f[i−j] 为必败态即可。

2.2、代码实现

class Solution {
    
    
public:
    bool divisorGame(int n) {
    
    
        vector<int> f(n + 5, false);

        f[1] = false;
        f[2] = true;
        for (int i = 3; i <= n; ++i) {
    
    
            for (int j = 1; j < i; ++j) {
    
    
                if (i % j == 0 && !f[i - j]) {
    
    
                    f[i] = true;
                    break;
                }
            }
        }

        return f[n];
    }
};

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度:O(n)。

三、 使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。

  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。
    总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。

  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。
    总花费为 6 。

来源:力扣(LeetCode)。

3.1、思路

假设数组 cost 的长度为 n,则 n 个阶梯分别对应下标 0 到 n−1,楼层顶部对应下标 n,问题等价于计算达到下标 n 的最小花费。可以通过动态规划求解。

创建长度为 n+1 的数组 dp,其中 dp[i] 表示达到下标 i 的最小花费。

由于可以选择下标 0 或 1 作为初始阶梯,因此有 dp[0]=dp[1]=0。2≤i≤n 时,可以从下标 i−1 使用 cost[i−1] 的花费达到下标 i,或者从下标 i−2 使用 cost[i−2] 的花费达到下标 i。为了使总花费最小,dp[i] 应取上述两项的最小值,因此状态转移方程如下:

dp[i]=min(dp[i−1]+cost[i−1],dp[i−2]+cost[i−2]),dp[n] 即为达到楼层顶部的最小花费。

3.2、代码实现

class Solution {
    
    
public:
    int minCostClimbingStairs(vector<int>& cost) {
    
    
        int n=cost.size();
        int *dp=new int[n+1];
        dp[0]=dp[1]=0;//初始条件
        for(int i=2;i<=n;i++)
        {
    
    
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[n];
    }
};

时间复杂度和空间复杂度都是 O(n)。注意到当 i≥2 时,dp[i] 只和 dp[i−1] 与 dp[i−2] 有关,因此可以使用滚动数组的思想,将空间复杂度优化到O(1)。

class Solution {
    
    
public:
    int minCostClimbingStairs(vector<int>& cost) {
    
    
        int n = cost.size();
        int prev = 0, curr = 0;
        for (int i = 2; i <= n; i++) {
    
    
            int next = min(curr + cost[i - 1], prev + cost[i - 2]);
            prev = curr;
            curr = next;
        }
        return curr;
    }
};

四、第 N 个泰波那契数

泰波那契序列 Tn 定义如下:

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:

输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

示例 2:

输入:n = 25
输出:1389537

来源:力扣(LeetCode)。

4.1、思路

泰波那契数的边界条件是 T(0)=0,T(1)=1,T(2)=1。当 n>2 时,每一项的和都等于前三项的和,因此有如下递推关系:T(n)=T(n−1)+T(n−2)+T(n−3)。

由于泰波那契数存在递推关系,因此可以使用动态规划求解。动态规划的状态转移方程即为上述递推关系,边界条件为 T(0)、T(1) 和 T(2)。

根据状态转移方程和边界条件,可以得到时间复杂度和空间复杂度都是 O(n) 的实现。由于 T(n) 只和前三项有关,因此可以使用「滚动数组思想」将空间复杂度优化成 O(1)。

4.2、代码实现

class Solution {
    
    
public:
    int tribonacci(int n) {
    
    
        if(n==0)
            return 0;
        else if(n<=2)
            return 1;
        
        int p=0,q=1,r=1,s=0;
        for(int i=3;i<=n;i++)
        {
    
    
            s=p+q+r;
            p=q;
            q=r;
            r=s;

        }
        return s;

    }
};

时间复杂度:O(n)。

空间复杂度:O(1)。

总结

动态规划(Dynamic Programming)是一种解决多阶段决策最优化问题的方法,它将复杂问题分解成重叠子问题并通过维护每个子问题的最优解来推导出问题的最优解。动态规划可以解决许多实际问题,例如最短路径问题、背包问题、最长公共子序列问题、编辑距离问题等。

动态规划的基本思想是利用已求解的子问题的最优解来推导出更大问题的最优解,从而避免了重复计算。它通常采用自底向上的方式进行求解,先求解出小规模的问题,然后逐步推导出更大规模的问题,直到求解出整个问题的最优解。

动态规划通常包括以下几个基本步骤:

  1. 定义状态:将问题划分为若干个子问题,并定义状态表示子问题的解;
  2. 定义状态转移方程:根据子问题之间的关系,设计状态转移方程,即如何从已知状态推导出未知状态的计算过程;
  3. 确定初始状态:定义最小的子问题的解;
  4. 自底向上求解:按照状态转移方程,计算出所有状态的最优解;
  5. 根据最优解构造问题的解。

动态规划的时间复杂度通常为 O ( n 2 ) O(n^2) O(n2) O ( n 3 ) O(n^3) O(n3),空间复杂度为O(n),其中n表示问题规模。在实际应用中,为了减少空间复杂度,通常可以使用滚动数组等技巧来优化动态规划算法。

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/Long_xu/article/details/131430292