2.6mnist手写数字识别之资源配置(含分布式)精讲(百度架构师手把手带你零基础实践深度学习原版笔记系列)

2.6mnist手写数字识别之资源配置(含分布式)精讲(百度架构师手把手带你零基础实践深度学习原版笔记系列)

目录

2.6mnist手写数字识别之资源配置精讲(百度架构师手把手带你零基础实践深度学习原版笔记系列)

概述

单GPU训练

分布式训练

模型并行

数据并行

PRC通信方式

NCCL2通信方式(Collective)


概述

从前几节的训练看,无论是房价预测任务还是MNIST手写字数字识别任务,训练好一个模型不会超过十分钟,主要原因是我们所使用的神经网络比较简单。但实际应用时,常会遇到更加复杂的机器学习或深度学习任务,需要运算速度更高的硬件(如GPU、NPU),甚至同时使用多个机器共同训练一个任务(多卡训练和多机训练)

(本节基础为飞浆深度学习框架,实验平台为百度AISTUDIO,极力推荐!被放养的研究生党也可以免费使用V100!!!)

 

单GPU训练

飞桨动态图通过fluid.dygraph.guard(place=None)里的place参数,设置在GPU上训练还是CPU上训练。

with fluid.dygraph.guard(place=fluid.CPUPlace()) #设置使用CPU资源训神经网络。
with fluid.dygraph.guard(place=fluid.CUDAPlace(0)) #设置使用GPU资源训神经网络,默认使用服务器的第一个GPU卡。"0"是GPU卡的编号,比如一台服务器有的四个GPU卡,编号分别为0、1、2、3。

#仅前3行代码有所变化,在使用GPU时,可以将use_gpu变量设置成True
use_gpu = False
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()

with fluid.dygraph.guard(place):
    model = MNIST()
    model.train()
    #调用加载数据的函数
    train_loader = load_data('train')
    
    #四种优化算法的设置方案,可以逐一尝试效果
    optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01, parameter_list=model.parameters())
    #optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.01, momentum=0.9, parameter_list=model.parameters())
    #optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.01, parameter_list=model.parameters())
    #optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.01, parameter_list=model.parameters())
    
    EPOCH_NUM = 2
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据,变得更加简洁
            image_data, label_data = data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            #前向计算的过程
            predict = model(image)
            
            #计算损失,取一个批次样本损失的平均值
            loss = fluid.layers.cross_entropy(predict, label)
            avg_loss = fluid.layers.mean(loss)
            
            #每训练了200批次的数据,打印下当前Loss的情况
            if batch_id % 200 == 0:
                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            model.clear_gradients()

    #保存模型参数
    fluid.save_dygraph(model.state_dict(), 'mnist')
loading mnist dataset from ./work/mnist.json.gz ......
epoch: 0, batch: 0, loss is: [2.446091]
epoch: 0, batch: 200, loss is: [0.45438847]
epoch: 0, batch: 400, loss is: [0.28040737]
epoch: 1, batch: 0, loss is: [0.36374608]
epoch: 1, batch: 200, loss is: [0.20319173]
epoch: 1, batch: 400, loss is: [0.16658476]

分布式训练

在工业实践中,很多较复杂的任务需要使用更强大的模型。强大模型加上海量的训练数据,经常导致模型训练耗时严重。比如在计算机视觉分类任务中,训练一个在ImageNet数据集上精度表现良好的模型,大概需要一周的时间,因为过程中我们需要不断尝试各种优化的思路和方案。如果每次训练均要耗时1周,这会大大降低模型迭代的速度。在机器资源充沛的情况下,建议采用分布式训练,大部分模型的训练时间可压缩到小时级别。

分布式训练有两种实现模式:模型并行和数据并行。

模型并行

模型并行是将一个网络模型拆分为多份,拆分后的模型分到多个设备上(GPU)训练,每个设备的训练数据是相同的。模型并行的实现模式可以节省内存,但是应用较为受限。

模型并行的方式一般适用于如下两个场景:

  1. 模型架构过大: 完整的模型无法放入单个GPU。如2012年ImageNet大赛的冠军模型AlexNet是模型并行的典型案例,由于当时GPU内存较小,单个GPU不足以承担AlexNet,因此研究者将AlexNet拆分为两部分放到两个GPU上并行训练。

  2. 网络模型的结构设计相对独立: 当网络模型的设计结构可以并行化时,采用模型并行的方式。如在计算机视觉目标检测任务中,一些模型(如YOLO9000)的边界框回归和类别预测是独立的,可以将独立的部分放到不同的设备节点上完成分布式训练。

数据并行

数据并行与模型并行不同,数据并行每次读取多份数据,读取到的数据输入给多个设备(GPU)上的模型,每个设备上的模型是完全相同的,飞桨采用的就是这种方式。


说明:

当前GPU硬件技术快速发展,深度学习使用的主流GPU的内存已经足以满足大多数的网络模型需求,所以大多数情况下使用数据并行的方式


数据并行的方式与众人拾柴火焰高的道理类似,如果把训练数据比喻为砖头,把一个设备(GPU)比喻为一个人,那单GPU训练就是一个人在搬砖,多GPU训练就是多个人同时搬砖,每次搬砖的数量倍数增加,效率呈倍数提升。值得注意的是,每个设备的模型是完全相同的,但是输入数据不同,因此每个设备的模型计算出的梯度是不同的。如果每个设备的梯度只更新当前设备的模型,就会导致下次训练时,每个模型的参数都不相同。因此我们还需要一个梯度同步机制,保证每个设备的梯度是完全相同的。

梯度同步有两种方式:PRC通信方式和NCCL2通信方式(Nvidia Collective multi-GPU Communication Library)。

PRC通信方式

PRC通信方式通常用于CPU分布式训练,它有两个节点:参数服务器Parameter server和训练节点Trainer,结构如 图2 所示。


图2:Pserver通信方式的结构


 

parameter server收集来自每个设备的梯度更新信息,并计算出一个全局的梯度更新。Trainer用于训练,每个Trainer上的程序相同,但数据不同。当Parameter server收到来自Trainer的梯度更新请求时,统一更新模型的梯度。

NCCL2通信方式(Collective)

当前飞桨的GPU分布式训练使用的是基于NCCL2的通信方式,结构如 图3 所示。


图3:NCCL2通信方式的结构


 

相比PRC通信方式,使用NCCL2(Collective通信方式)进行分布式训练,不需要启动Parameter server进程,每个Trainer进程保存一份完整的模型参数,在完成梯度计算之后通过Trainer之间的相互通信,Reduce梯度数据到所有节点的所有设备,然后每个节点再各自完成参数更新。

飞桨提供了便利的数据并行训练方式,用户只需要对程序进行简单修改,即可实现在多GPU上并行训练。接下来讲述如何将一个单机程序通过简单的改造,变成多机多卡程序。


说明:

AI Studio当前仅支持单卡GPU,因此本案例需要在本地GPU上执行,无法在AI Studio上演示。


在启动训练前,需要配置如下参数:

  • 从环境变量获取设备的ID,并指定给CUDAPlace。
  device_id = fluid.dygraph.parallel.Env().dev_id
  place = fluid.CUDAPlace(device_id)
  • 对定义的网络做预处理,设置为并行模式。
  strategy = fluid.dygraph.parallel.prepare_context() ## 新增
  model = MNIST()
  model = fluid.dygraph.parallel.DataParallel(model, strategy)  ## 新增
  • 定义多GPU训练的reader,不同ID的GPU加载不同的数据集。
  valid_loader = paddle.batch(paddle.dataset.mnist.test(), batch_size=16, drop_last=true)
  valid_loader = fluid.contrib.reader.distributed_batch_reader(valid_loader)
  • 收集每批次训练数据的loss,并聚合参数的梯度。
  avg_loss = model.scale_loss(avg_loss)  ## 新增
  avg_loss.backward()
  mnist.apply_collective_grads()         ## 新增

完整程序如下所示。

def train_multi_gpu():
    
    ##修改1-从环境变量获取使用GPU的序号
    place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id)

    with fluid.dygraph.guard(place):
    
        ##修改2-对原模型做并行化预处理
        strategy = fluid.dygraph.parallel.prepare_context()
        model = MNIST()
        model = fluid.dygraph.parallel.DataParallel(model, strategy)

        model.train()

        #调用加载数据的函数
        train_loader = load_data('train')
        ##修改3-多GPU数据读取,必须确保每个进程读取的数据是不同的
        train_loader = fluid.contrib.reader.distributed_batch_reader(train_loader)

        optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01, parameter_list=model.parameters())
        EPOCH_NUM = 5
        for epoch_id in range(EPOCH_NUM):
            for batch_id, data in enumerate(train_loader()):
                #准备数据
                image_data, label_data = data
                image = fluid.dygraph.to_variable(image_data)
                label = fluid.dygraph.to_variable(label_data)

                predict = model(image)

                loss = fluid.layers.cross_entropy(predict, label)
                avg_loss = fluid.layers.mean(loss)

                # 修改4-多GPU训练需要对Loss做出调整,并聚合不同设备上的参数梯度
                avg_loss = model.scale_loss(avg_loss)
                avg_loss.backward()
                model.apply_collective_grads()
                # 最小化损失函数,清除本次训练的梯度
                optimizer.minimize(avg_loss)
                model.clear_gradients()
                
                if batch_id % 200 == 0:
                    print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))

    #保存模型参数
    fluid.save_dygraph(model.state_dict(), 'mnist')

启动多GPU的训练,还需要在命令行中设置一些参数变量。打开终端,运行如下命令:

$ python -m paddle.distributed.launch --selected_gpus=0,1,2,3 --log_dir ./mylog train_multi_gpu.py
  • paddle.distributed.launch:启动分布式运行。
  • selected_gpus:设置使用的GPU的序号(需要是多GPU卡的机器,通过命令watch nvidia-smi查看GPU的序号)。
  • log_dir:存放训练的log,若不设置,每个GPU上的训练信息都会打印到屏幕。
  • train_multi_gpu.py:多GPU训练的程序,包含修改过的train_multi_gpu()函数。

训练完成后,在指定的./mylog文件夹下会产生四个日志文件,其中worklog.0的内容如下:

grep: warning: GREP_OPTIONS is deprecated; please use an alias or script
dev_id 0
I1104 06:25:04.377323 31961 nccl_context.cc:88] worker: 127.0.0.1:6171 is not ready, will retry after 3 seconds...
I1104 06:25:07.377645 31961 nccl_context.cc:127] init nccl context nranks: 3 local rank: 0 gpu id: 1↩
W1104 06:25:09.097079 31961 device_context.cc:235] Please NOTE: device: 1, CUDA Capability: 61, Driver API Version: 10.1, Runtime API Version: 9.0
W1104 06:25:09.104460 31961 device_context.cc:243] device: 1, cuDNN Version: 7.5.
start data reader (trainers_num: 3, trainer_id: 0)
epoch: 0, batch_id: 10, loss is: [0.47507238]
epoch: 0, batch_id: 20, loss is: [0.25089613]
epoch: 0, batch_id: 30, loss is: [0.13120805]
epoch: 0, batch_id: 40, loss is: [0.12122715]
epoch: 0, batch_id: 50, loss is: [0.07328521]
epoch: 0, batch_id: 60, loss is: [0.11860339]
epoch: 0, batch_id: 70, loss is: [0.08205047]
epoch: 0, batch_id: 80, loss is: [0.08192863]
epoch: 0, batch_id: 90, loss is: [0.0736289]
epoch: 0, batch_id: 100, loss is: [0.08607423]
start data reader (trainers_num: 3, trainer_id: 0)
epoch: 1, batch_id: 10, loss is: [0.07032011]
epoch: 1, batch_id: 20, loss is: [0.09687119]
epoch: 1, batch_id: 30, loss is: [0.0307216]
epoch: 1, batch_id: 40, loss is: [0.03884467]
epoch: 1, batch_id: 50, loss is: [0.02801813]
epoch: 1, batch_id: 60, loss is: [0.05751991]
epoch: 1, batch_id: 70, loss is: [0.03721186]
.....

猜你喜欢

转载自blog.csdn.net/coolyoung520/article/details/109016092