吴恩达 深度学习系列--结构化机器学习项目(Structuring Machine Learning Projects)(ML strategy(2))--08

1.1 进行误差分析(Carrying out error analysis)

  • 进行错误分析,你应该找一组错误样本,可能在你的开发集里或者测试集里,观察错误标记的样本,看看假阳性(false positives)和假阴性(false negatives),统计属于不同错误类型的错误数量。在这个过程中,你可能会得到启发,归纳出新的错误类型,就像我们看到的那样。如果你过了一遍错误样本,然后说,天啊,有这么多Instagram滤镜或Snapchat滤镜,这些滤镜干扰了我的分类器,你就可以在途中新建一个错误类型。总之,通过统计不同错误标记类型占总数的百分比,可以帮你发现哪些问题需要优先解决,或者给你构思新优化方向的灵感。

1.2 清除标注错误的数据(Cleaning up Incorrectly labeled data)

首先,我们来考虑训练集,事实证明,深度学习算法对于训练集中的随机错误是相当健壮的(robust)。有时可能做标记的人没有注意或者不小心,按错键了,如果错误足够随机,那么放着这些错误不管可能也没问题,而不要花太多时间修复它们。
深度学习算法对随机误差很健壮,但对系统性的错误就没那么健壮了。所以比如说,如果做标记的人一直把白色的狗标记成猫,那就成问题了。因为你的分类器学习之后,会把所有白色的狗都分类为猫。但随机错误或近似随机错误,对于大多数深度学习算法来说不成问题。

  • 首先,深度学习研究人员有时会喜欢这样说:“我只是把数据提供给算法,我训练过了,效果拔群”。这话说出了很多深度学习错误的真相,更多时候,我们把数据喂给算法,然后训练它,并减少人工干预,减少使用人类的见解。但我认为,在构造实际系统时,通常需要更多的人工错误分析,更多的人类见解来架构这些系统,尽管深度学习的研究人员不愿意承认这点。
  • 其次,不知道为什么,我看一些工程师和研究人员不愿意亲自去看这些样本,也许做这些事情很无聊,坐下来看100或几百个样本来统计错误数量,但我经常亲自这么做。当我带领一个机器学习团队时,我想知道它所犯的错误,我会亲自去看看这些数据,尝试和一部分错误作斗争。我想就因为花了这几分钟,或者几个小时去亲自统计数据,真的可以帮你找到需要优先处理的任务,我发现花时间亲自检查数据非常值得,所以我强烈建议你们这样做,如果你在搭建你的机器学习系统的话,然后你想确定应该优先尝试哪些想法,或者哪些方向。

1.3 快速搭建你的第一个系统,并进行迭代(Build your first system quickly, then iterate)

  • 如果你正在开发全新的机器学习应用,我通常会给你这样的建议,你应该尽快建立你的第一个系统原型,然后快速迭代。建立这个初始系统的所有意义在于,它可以是一个快速和粗糙的实现(quick and dirty implementation),你知道的,别想太多。初始系统的全部意义在于,有一个学习过的系统,有一个训练过的系统,让你确定偏差方差的范围,就可以知道下一步应该优先做什么,让你能够进行错误分析,可以观察一些错误,然后想出所有能走的方向,哪些是实际上最有希望的方向。

1.4 使用来自不同分布的数据,进行训练和测试(Traing ang testing on different distributions)

1.5 数据分布不匹配时,偏差与方差的分析(Bias and Variance with mismatched data distributions)

1.6 处理数据不匹配问题(Addressing data mismatch)

1.7 迁移学习(Transfer learning)

  • 深度学习中,最强大的理念之一就是,有的时候神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中。所以例如,也许你已经训练好一个神经网络,能够识别像猫这样的对象,然后使用那些知识,或者部分习得的知识去帮助您更好地阅读x射线扫描图,这就是所谓的迁移学习

  • 在这个新数据集上重新训练网络,在新的放射科数据集上训练网络。要用放射科数据集重新训练神经网络有几种做法。你可能,如果你的放射科数据集很小,你可能只需要重新训练最后一层的权重,就是wL和 bL 并保持其他参数不变。如果你有足够多的数据,你可以重新训练神经网络中剩下的所有层。经验规则是,如果你有一个小数据集,就只训练输出层前的最后一层,或者也许是最后一两层。但是如果你有很多数据,那么也许你可以重新训练网络中的所有参数。如果你重新训练神经网络中的所有参数,那么这个在图像识别数据的初期训练阶段,有时称为预训练(pre-training),因为你在用图像识别数据去预先初始化,或者预训练神经网络的权重。然后,如果你以后更新所有权重,然后在放射科数据上训练,有时这个过程叫微调(fine tuning)。如果你在深度学习文献中看到预训练和微调,你就知道它们说的是这个意思,预训练和微调的权重来源于迁移学习。

  • 什么时候迁移学习是有意义的?
    在这里插入图片描述

  • 迁移学习最有用的场合是,如果你尝试优化任务B的性能,通常这个任务数据相对较少,例如,在放射科中你知道很难收集很多X射线扫描图来搭建一个性能良好的放射科诊断系统,所以在这种情况下,你可能会找一个相关但不同的任务,如图像识别,其中你可能用1百万张图片训练过了,并从中学到很多低层次特征,所以那也许能帮助网络在任务B在放射科任务上做得更好,尽管任务B没有这么多数据。迁移学习什么时候是有意义的?它确实可以显著提高你的学习任务的性能,但我有时候也见过有些场合使用迁移学习时,任务A实际上数据量比任务B要少,这种情况下增益可能不多。

1.8 多任务学习(Multi-task learning)

  • 在迁移学习中,你的步骤是串行的,你从任务A里学习只是然后迁移到任务B。在多任务学习中,你是同时开始学习的,试图让单个神经网络同时做几件事情,然后希望这里每个任务都能帮到其他所有任务。
  • 1.多任务网络损失函数:
    在这里插入图片描述
    现在需要定义神经网络的损失函数,对于一个输出y^,是个4维向量,对于整个训练集的平均损失:在这里插入图片描述
    在这里插入图片描述这是单个预测损失,具体就是logistic损失,展开:在这里插入图片描述
    整个训练集的平均损失和之前分类猫的例子主要区别在于,现在你要对j=1到4求和,这与softmax回归的主要区别在于,与softmax回归不同,softmax将单个标签分配给单个样本。
  • 2.多任务学习什么时候有意义?
    在这里插入图片描述

1.9 什么时端到端学习的深度学习(What is end-to-end deep learning?)

  • 事实证明,端到端深度学习的挑战之一是,你可能需要大量数据才能让系统表现良好。当你的数据集较小的时候,传统流水线方法其实效果也不错,通常做得更好。你需要大数据集才能让端到端方法真正发出耀眼光芒。如果你的数据量适中,那么也可以用中间件方法,你可能输入还是音频,然后绕过特征提取,直接尝试从神经网络输出音位,然后也可以在其他阶段用,所以这是往端到端学习迈出的一小步,但还没有到那里。

1.10 是否要使用端到端的深度学习?(Whether to use end-to-end learning?)

  • 端到端的优点:
    在这里插入图片描述
  • 端到端的缺点:
    在这里插入图片描述
发布了59 篇原创文章 · 获赞 8 · 访问量 1万+

猜你喜欢

转载自blog.csdn.net/Galen_xia/article/details/103758884