吴恩达机器学习之降维(Dimensionality Reduction)(三):主成分分析问题、主成分分析算法、选择主成分的数量(详细笔记,建议收藏,已有专栏)

吴恩达机器学习栏目清单
专栏直达:https://blog.csdn.net/qq_35456045/category_9762715.html在这里插入图片描述

14.3 主成分分析问题

参考视频: 14 - 3 - Principal Component Analysis Problem Formulation (9 min). mkv

主成分分析(PCA)是最常见的降维算法。
在PCA中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据都投射到该向量上时,我们希望投射平均均方误差能尽可能地小。方向向量是一个经过原点的向量,而投射误差是从特征向量向该方向向量作垂线的长度。
在这里插入图片描述
下面给出主成分分析问题的描述:
问题是要将n维数据降至k维,目标是找到向量u((1)),u((2)),…,u^((k))使得总的投射误差最小。主成分分析与线性回顾的比较:
主成分分析与线性回归是两种不同的算法。主成分分析最小化的是投射误差(Projected Error),而线性回归尝试的是最小化预测误差。线性回归的目的是预测结果,而主成分分析不作任何预测。
在这里插入图片描述
上图中,左边的是线性回归的误差(垂直于横轴投影),右边则是主要成分分析的误差(垂直于红线投影)。
PCA将n个特征降维到k个,可以用来进行数据压缩,如果100维的向量最后可以用10维来表示,那么压缩率为90%。同样图像处理领域的KL变换使用PCA做图像压缩。但PCA 要保证降维后,还要保证数据的特性损失最小。
PCA技术的一大好处是对数据进行降维的处理。我们可以对新求出的“主元”向量的重要性进行排序,根据需要取前面最重要的部分,将后面的维数省去,可以达到降维从而简化模型或是对数据进行压缩的效果。同时最大程度的保持了原有数据的信息。
PCA技术的一个很大的优点是,它是完全无参数限制的。在PCA的计算过程中完全不需要人为的设定参数或是根据任何经验模型对计算进行干预,最后的结果只与数据相关,与用户是独立的。
但是,这一点同时也可以看作是缺点。如果用户对观测对象有一定的先验知识,掌握了数据的一些特征,却无法通过参数化等方法对处理过程进行干预,可能会得不到预期的效果,效率也不高。

14.4 主成分分析算法

参考视频: 14 - 4 - Principal Component Analysis Algorithm (15 min).mkv

在这里插入图片描述
第三步是计算协方差矩阵Σ的特征向量(eigenvectors):

在这里插入图片描述

14.5 选择主成分的数量

参考视频: 14 - 5 - Choosing The Number Of Principal Components (13 min).mkv

主要成分分析是减少投射的平均均方误差:

在这里插入图片描述
我们希望在平均均方误差与训练集方差的比例尽可能小的情况下选择尽可能小的k值。
如果我们希望这个比例小于1%,就意味着原本数据的偏差有99%都保留下来了,如果我们选择保留95%的偏差,便能非常显著地降低模型中特征的维度了。
我们可以先令k=1,然后进行主要成分分析,获得U_reduce和z,然后计算比例是否小于1%。如果不是的话再令k=2,如此类推,直到找到可以使得比例小于1%的最小k 值(原因是各个特征之间通常情况存在某种相关性)。

在这里插入图片描述

发布了827 篇原创文章 · 获赞 1169 · 访问量 15万+

猜你喜欢

转载自blog.csdn.net/qq_35456045/article/details/105001093