Deep Learning - Rede Neural Convolucional CNN

conceito básico

visão geral

Rede Neural Convolucional (CNN) é um modelo de rede neural comumente usado em aprendizado profundo para processar dados com uma estrutura de grade. É amplamente utilizado na classificação de imagens, detecção de objetos, geração de imagens e outras tarefas no campo da visão computacional.

idéia principal

A ideia central da CNN é capturar as informações da estrutura espacial dos dados de entrada, utilizando a percepção local e o compartilhamento de parâmetros. Em comparação com a rede neural totalmente conectada tradicional, a CNN introduz camadas convolucionais e camadas de agrupamento na estrutura da rede, reduzindo assim o número de parâmetros e lidando melhor com dados de entrada de alta dimensão.

outros conceitos

Camada de entrada : Recebe imagens brutas ou outras formas de dados de entrada.
Camada Convolucional : Use operações de convolução para extrair recursos de entrada, deslize nos dados de entrada definindo filtros (kernels de convolução) e execute operações de convolução. Desta forma, características locais como arestas e texturas podem ser aprendidas.
Função de ativação : Cada camada convolucional é geralmente seguida por uma função de ativação não linear, como ReLU (Rectified Linear Unit), para aumentar a expressividade não linear da rede.
Camada de agrupamento : reduz a complexidade do modelo reduzindo o tamanho dos mapas de recursos. Uma operação de agrupamento comumente usada é o Max Pooling, que seleciona o maior autovalor dentro de cada janela de agrupamento como saída.
Camada totalmente conectada : conecte a saída da camada convolucional e da camada de pooling à camada totalmente conectada e use o modelo de rede neural tradicional para executar tarefas como classificação e regressão.
Camada de abandono : durante o processo de treinamento, a saída de alguns neurônios é definida aleatoriamente como 0 com uma certa probabilidade de reduzir o overfitting do modelo.
Camada Softmax : A camada de saída comumente usada em problemas de multiclassificação.A operação softmax é executada na última camada para converter a saída em uma distribuição de probabilidade na categoria.

Código e comentários detalhados

import os

# third-party library
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

# torch.manual_seed(1)    # reproducible

# Hyper Parameters
#  轮次
EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
# 批大小为50
BATCH_SIZE = 50
# 学习率
LR = 0.001
# 是否下载mnist数据集
DOWNLOAD_MNIST = False


# 下载minist数据集
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
    # not mnist dir or mnist is empyt dir
    DOWNLOAD_MNIST = True

# torchvision本身就是一个数据库
train_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # this is training data
    transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                                    # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,
)

# 输出训练数据尺寸
print(train_data.train_data.size())                 # (60000, 28, 28)
# 输出标签数据尺寸
print(train_data.train_labels.size())               # (60000)
# 展示训练数据集中的第0个图片
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
# 图片的标题是标签
plt.title('%i' % train_data.train_labels[0])
plt.show()

# Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)
# 批大小为50,shuffle为True意思是设置为随机
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# pick 2000 samples to speed up testing
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
# 使用unsqueeze增加一个维度
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]


class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        # 快速搭建神经网络
        self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
            nn.Conv2d(
                in_channels=1,              # input height
                out_channels=16,            # n_filters
                kernel_size=5,              # filter size
                stride=1,                   # filter movement/step
                padding=2,                  # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
            ),                              # output shape (16, 28, 28)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14)
        )
        self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
            nn.ReLU(),                      # activation
            nn.MaxPool2d(2),                # output shape (32, 7, 7)
        )
        self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes

    # 前向传播
    def forward(self, x):
        # 第一层卷积
        x = self.conv1(x)
        # 第二层卷积
        x = self.conv2(x)
        x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
        output = self.out(x)
        return output, x    # return x for visualization


cnn = CNN()
print(cnn)  # net architecture

# 选择优化器
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
# 选择损失函数
loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted

# following function (plot_with_labels) is for visualization, can be ignored if not interested
from matplotlib import cm
try: from sklearn.manifold import TSNE; HAS_SK = True
except: HAS_SK = False; print('Please install sklearn for layer visualization')
def plot_with_labels(lowDWeights, labels):
    plt.cla()
    X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
    for x, y, s in zip(X, Y, labels):
        c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
    plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)

plt.ion()


# training and testing
for epoch in range(EPOCH):
    for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader

        output = cnn(b_x)[0]            # cnn output
        loss = loss_func(output, b_y)   # cross entropy loss
        optimizer.zero_grad()           # clear gradients for this training step
        loss.backward()                 # backpropagation, compute gradients
        optimizer.step()                # apply gradients

        if step % 50 == 0:
            test_output, last_layer = cnn(test_x)
            pred_y = torch.max(test_output, 1)[1].data.numpy()
            accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
            if HAS_SK:
                # Visualization of trained flatten layer (T-SNE)
                tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
                plot_only = 500
                low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
                labels = test_y.numpy()[:plot_only]
                plot_with_labels(low_dim_embs, labels)
plt.ioff()

# print 10 predictions from test data
test_output, _ = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')



resultado da operação

insira a descrição da imagem aqui

insira a descrição da imagem aqui

Acho que você gosta

Origin blog.csdn.net/Elon15/article/details/131690478
Recomendado
Clasificación