テストケースの星雲正確な試験アンドリュース基礎となるドライバコード解析

Androidのネイティブアプリケーションは、非常に広いドライバーの基礎となるが、品質を追跡する良い方法がなかったです。ネイティブのAndroid、計装、コンパイル、データ収集、データ分析の基礎となる分析のための正確なテストドライブ星雲、信頼性の高い検査技術の助けを借りて、ネイティブアンドロイド基盤となるドライバがドッキングされてどのように正確な検査を実現するためにステップバイステップで説明します。

この記事では、我々は明らかにこのようなコード星雲正確なテスト機器、テストを使用し、遡及データのコードを実行するための基になるコレクションドライブを実装する方法として、ドッキング技術のすべてのステップは、データが最終シリーズを収集方法を見ることができます分析。

ワン、アンドリュースソース正確なテストプロセスの概要

コンパイルされたAndroidのソースコードの分析は、主に接続するリンクとしてAndroid.bpを頼って、コンパイル時に、必要なだけのディレクトリにmmのコマンドを実行することが、あなたが自動的に現在のディレクトリにそのAndroid.bpファイルに従ってに含まれるモジュールをコンパイルしたいですモジュールがコンパイルされます。

1.png

主流れはおおよそである:そこにコピーしAndroid.bpのレベルの第1 ZOA通信ライブラリのソースコードを追加し、ファイルがニンジャAndroid.bp集計情報のすべてのシェル、シェル計装JSONファイルを承認を得ることができるが含まを解析します対応するディレクトリファイルJSONによってインストルメントコードは、計測が完了した後、モジュールAndroid.bpの添加は、基準通信ZOAのライブラリコンパイルヘッダZoaInstru.h通常のインストルメントプログラム後のファイルに入れ。

第二に、正確なテスト準備ツールのアンドリュースソース

1。アンドリュース8.1.0系天然源、配置中/データ/ソース2 /ディレクトリ

2。/ data /ディレクトリに置かれshell.tar.gz計測キット

3。/フレームワーク/ AV /ディレクトリの下に、通信ライブラリ/データ/ソース2に配置されZOAMQLib源

4。ネイティブの電話システムを搭載した公式8.1.0

コンパイルされ、この実施の形態である/データ/ソース2 /フレームワーク/ AV /カメラモジュールその後、インストルメント最初のソースのビルド/ envsetup.shのconfigure、環境変数、その後、昼食2 aosp_arm64-ENG選択入力後、変換モジュールのミリメートル

第三に、高精度のテスト機器ツールの展開

精密検査計測キット/ data /ディレクトリに保存されたファイル名を指定して実行

tar -zxvf shell.tar.gz

高精度のテスト機器キットは、解凍します

cd /data/shell/bin

进入shell包bin目录下打开并修改Server.cfg的[SERVER]字段的ip为星云精准测试服务端ip,对[LOCAL]字段的ip,客户端若与服务端在同一主机则保持127.0.0.1,若在不同主机则写明客户端ip。

四、ZOA通信库加入安卓体系

本次选择av模块进行精准测试的插桩编译验证模块,在对av模块进行深入了解后,解析出其Android,bp的连接其结构大致如此,每一个最终节点就代表会生成一个动态库或者静态库。

av大致结构与ZOA通信库加入安卓体系示意图:

2.png

注:由于第二层mediadrm模块库目录过多不便展开,但原理又是相同,所以仅对该模块展示骨架信息;绿色部分代表会产生一个库文件,mediadrm只是骨架结构所以未标识。

本次是将写好对应的Android.bp文件的ZOA通信库源代码目录整个复制到av目录下,并在av目录下的Android.bp文件中加入ZOA通信库的目录。

cd /data/source2/frameworks/av/

进入av模块

vi Android.bp

打开av模块的Android.bp文件,并将ZOAMQLib目录加入其中

ZOA通信库加入av模块的Android.bp图示:

3.png

然后在ZOAMQLib目录下直接执行mm命令,编译出安卓体系下的ZOA通信库。

五、插桩编译流程

1.生成json文件

android源码在进行编译时他会将所有的Android.bp中的信息提取出来并添加一些编译信息来生成一个build.ninja文件。该文件中含有编译的模块、源代码和编译参数等信息。

通过android自带的ninja工具可以将该build.ninja文件转化为包含源代码路径、源代码名字和编译参数信息的json文件;再通过工具可以将要插桩模块的部分提取出来生成该模块的插桩json文件

生成json文件的命令:

/data/source2/prebuilts/build-tools/linux-x86/bin/ninja -t compdb g.cc.cc > compile_commands.json

其中/data/source2/为安卓源代码路径

2.插桩代码

shell编译器可以通过该json文件对该模块进行插桩或还原操作。

插桩代码命令 shell的路径/shell -p json文件的路径/ compile_commands.json

还原代码命令 shell的路径/shell -r json文件的路径/ compile_commands.json

本次插桩与还原命令:

/data/shell/bin/shell -p /data/source2/compile_commands.json

/data/shell/bin/shell -r /data/source2/compile_commands.json

插桩成功后在客户端重新加载版本数据:

4.png

3.编译链接

链接通信库

cd /data/source2/frameworks/av/camera

进入camera目录下

vi Android.bp

打开camera模块的Android.bp文件并在shared_libs中加入ZOA通信库的名字

camera的Android.bp加入ZOA通信库链接图示:

5.png

加入头文件

cp /data/shell/include/ZoaInstru.h /data/source2/frameworks/av/camera/include/

将ZOA的头文件加入被插桩的camera的头文件夹中

然后就可以按照正常的编译流程来进行编译,执行mm编译该模块。

插桩编译图示:

6.png

六、测试方式

本例是将安卓原生8.1.0代码进行插桩后,放入官方8.1.0系统并获得root权限的手机中进行测试

本次插桩的是av模块的camera部分,所以我们将

camera模块库:

/data/source2/out/soong/.intermediates/frameworks/av/camera/libcamera_client/android_arm64_armv8-a_shared_core/libcamera_client.so

ZOA通信库:

/data/source2/out/soong/.intermediates/frameworks/av/ZOAMQLib/libZOAMQLib/android_arm64_armv8-a_shared_core /libZOAMQLib.so

这两个库放进手机的/system/lib64/目录中开机进行相机测试。

测试概念图:

7.png

将被测手机开机后用usb线连接到电脑上,采用adb端口映射的方法将程序运行时产生的动态数据传输到星云精准测试工具上,再通过示波器进行波形展示。

数据传输图:

8.png

在星云精准测试工具客户端打开示波器界面,建立测试用例并选择测试用例后点击 开始 并对手机进行相机功能的操作就可以在接收到动态数据并示波器看到波形了。

示波器接收数据图:

9.png

七、精准测试-基础功能

1.覆盖率

在对测试用例录制完成后就可以在主界面看到覆盖率等相关信息。

在函数列表中随便点开一个函数就可以查看该函数的各项覆盖率。

1.SCO覆盖率

SCO覆盖率即为语句块覆盖率,在函数内顺序执行遇见if、for、while等就算为一个语句块。

SC0覆盖率图示:

10.png

2.MCDC覆盖率

MCDC 修订条件判定覆盖,精准测试中对mcdc做了量化展示,分别统计单一条件个数,针对每一个条件判断是否满足mcdc覆盖如果满足如上图绿色表示条件满足mcdc覆盖,蓝色表示不满足。并对MCDC做了详细信息的展示(选择MCDC覆盖,点击判定,显示MCDC的详细信息)

MCDC覆盖率图示:

11.png

注:

1.覆盖率信息一共有七种,分别为SCO语句块覆率、True、Flase、Both等条件覆盖率、Branch条件分支覆盖率、CDC条件判定覆盖率、MCDC修正条件判定。

2.精准测试默认是不关联源码的,如需要关联源代码使用,请将源码复制到客户端本地,在版本上右键选择修改源码路径,然后添加源码路径来关联源码。

2.函数调用关系图

函数调用图,只有函数调用的关系,能够比较清楚地看清函数调用的层次关系。当点击其中的某个函数时,能显示以该函数为中心,调用该函数的上三层和下三层调用(可点击设置层级进行层级的调整)。

当接收过动态数据后还能将各项数据显示在图像界面中。

12.png

3.程序控制流程图

控制流程图基础功能是展示函数的控制流程,即控制流程图,用于表示函数的控制流程、显示测试覆盖率结果、实现半自动高效率测试用例设计,进行逻辑流程查错,以及源码、测试用例和相关文档之间的双向自动追溯等。
13.png

4.简易控制流程图

简易控制流程图功能,以语句块的形式清晰的展示函数内部的控制逻辑,界面上可以直观的看出控制流各节点的测试覆盖情况,在展示中,简易控制流程图还可以通过颜色对每个程序块进行覆盖率标识,在缩略图中整个模块的覆盖率非常直观。(背景色为绿色表示有测试用例覆盖到该块)关联源码后点击语句块可定位到代码具体行。

14.png

5.双向追溯

由于精准测试的测试用例与执行过的函数绑定,可以在测试台通过选择不同的测试用例来正向追溯找到它执行过的函数;或者通过选择不同的函数或代码来反向追溯找到执行过它的测试用例。

正向追溯图示:

15.png

该正向追溯是通过在左上侧选择测试用例来在下方展示该测试用例运行过的函数

反向追溯图示:

16.png

反向追溯既可以通过左下角的函数来追溯运行过该函数的测试用例,还可以通过选择代码块来追溯运行过该块的测试用例。

八、精准测试-高级分析功能

1.智能回归测试用例选取

在第一个版本测试完成后对第二个版本进行插桩后就在星云精准测试工具生成了第二个工程版本。此时我们要做的不是立马对新版本进行测试,而是使用我们星云精准测试的回归功能对新插桩的版本进行回归,它会根据版本之间代码的变化的来分析出与该函数相关的测试用例,然后根据测试用例内函数改变的多少进行回归优先级的排序,智能的推荐出需要重新跑的测试用例,以及显示出不需要跑的测试用例。

智能回归示例:

cd /data/source2/frameworks/av/camera进入到camera目录下

vi ICamera.cpp打开该源码进行修改

在getParameters函数中加入if(1==1);条件

17.png

然后对camera模块进行插桩,再在客户端使用选取回归测试用例功能进行回归

由于getParameters函数内新增条件发生变化,所以运行过该函数的测试用例的回归计数就加一,然后该测试用例就被推荐出来需要重新去跑一遍。

回归图示:

18.png

对精准测试而言,其是采用在测试阶段,将测试用例和它所执行过的函数绑定的方法。在版本迭代时会将上一个版本的测试用例继承下来,通过回归跟上个版本进行比较,哪个函数有了变化,那么与其相关的测试用例的功能都可能会发生变化,所以在回归时会推荐出要重新测试的测试用例;而当一个测试用例里面关联的所有函数都没发生变化时他的功能也不会发生变化,那么此时再去测试一遍该用例是没有意义的事情。所以,在新版本插桩完毕后和以前的进行回归后就可以看出哪些用例需要重新跑哪些完全不用再跑。

2.最后执行时序

该部分是执行插桩程序进行动态数据接收时保存的最后五十个语句块执行的时序关系图

19.png

它可以点击每一步次序查看执行块的代码

3.聚类分析

聚类算法中个数的设置是需要手动设置的,一般看颗粒度的粗细进行设置。聚类算法是通过测试用例的代码相似程度得出结果的,所以可以帮助我们划分出来有哪些测试用例的代码相似程度比较高,

本次共设计7个测试用例,两次拍照、两次录视频、一次随便侧、一次打开相机、一次打开相机后闲置。

选择分类个数为5后,聚类结果为:

20.png

グラフモードでは:

21.png

10、Webレポート

【図カバレッジ日々成長曲線

例日々の報道のバージョンで明確な変化を示すために折れ線グラフを使用します

22.png

レーダー図が示すの左下隅カバレッジの予想カバレッジとのギャップの実際の外観

最新版の適用範囲の現在のバージョンと比較して右下隅の違い

2.テストインテリジェンス分析の脆弱性

精密」は、1つのプログラムは、これらの機能のいくつかのプロセス全体のコアに関連した機能の多くの場合、数百人で、そのうちのいくつかは、開発者廃止されますが、これらの機能の多くのため、削除には消極的残ります静的および動的な指標、プログラム機能の多数のショーに報告することによって所定のテストを計算することによって潜在的なリスクの高い脆弱性の直接スクリーニングの包括的分析を用いて試験」。

機能は非常に高い複雑さがあるが、それはハイリスクかもしれ表示されたときにカバレッジは非常に低い確率である場合には

23.png

場合関数ファンイン、ファンアウトが大きいほど、そのカバレッジ情報と組み合わされ、より相関関数は、より高いリスクがあり得ることを意味します。

24.png

おすすめ

転載: blog.51cto.com/13883507/2455341