Lenetニューラルネットワーク - リアライズの記事(2)

コードは以下の通りであります:

mnist_lenet5_forward.py

#1 コーディング:UTF 8 
インポートAS tensorflowのTF
 28 * 28の画像の解像度ごと 
image_sizeでは= 28 MNIST階調画像データセットは、入力画像値がNUM_CHANNELSチャネルになるように1。 
NUM_CHANNELS 1 =。 第一層ボリュームコンボリューションカーネルサイズ5 
CONV1_SIZE。5 = #1 コアの畳み込み数は32である 
CONV1_KERNEL_NUM = 32 コンボリューションカーネルの第二層サイズの5 
CONV2_SIZE。5 = #1 コアの畳み込み数は64である 
CONV2_KERNEL_NUM = 64 #の全体接続層第一層512個のニューロン 
FC_SIZE = 512 完全に接続された第2層10のニューロン 
OUTPUT_NODE = 10の#の重みWが算出されるDEF :(形状、正則)をget_weight 
    wは tf.Variable(tf.truncated_normal(形状、STDDEV = 0.1 =









))
    if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w)) 
    return w

#偏置b计算
def get_bias(shape): 
    b = tf.Variable(tf.zeros(shape))  
    return b

#卷积层计算
def conv2d(x,w):  
    return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')

#最大池化层计算
def max_pool_2x2(x):  
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') 

def forward(x, train, regularizer):
    #实现第一层卷积
    conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer) 
    conv1_b = get_bias([CONV1_KERNEL_NUM]) 
    conv1 = conv2d(x, conv1_w) 
    #非线性激活
    relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b)) 
    #最大池化
    pool1 = max_pool_2x2(relu1) 

    #实现第二层卷积
    conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM],regularizer) 
    conv2_b = get_bias([CONV2_KERNEL_NUM])
    conv2 = conv2d(pool1, conv2_w) 
    relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
    pool2 = max_pool_2x2(relu2)
     
    #获取一个张量的维度
    pool_shape = pool2.get_shape().as_list() 
    #pool_shape[1] 为长 pool_shape[2] 为宽 pool_shape[3]为高
    nodes = pool_shape[1] * pool_shape[2] * pool_shape[3] 
    #得到矩阵被拉长后的长度,pool_shape[0]为batch值
    reshaped = tf.reshape(pool2, [pool_shape[0], nodes]) 

    #实现第三层全连接层
    fc1_w = get_weight([nodes, FC_SIZE], regularizer) 
    fc1_b = get_bias([FC_SIZE]) 
    fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_w) + fc1_b) 
    #如果是训练阶段,则对该层输出使用dropout
    if train: fc1 = tf.nn.dropout(fc1, 0.5)

    #实现第四层全连接层
    fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
    fc2_b = get_bias([OUTPUT_NODE])
    y = tf.matmul(fc1, fc2_w) + fc2_b
    return y 

mnist_lenet5_backward.py

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_lenet5_forward
import os
import numpy as np

#batch的数量
BATCH_SIZE = 100
#初始学习率
LEARNING_RATE_BASE =  0.005 
#学习率衰减率
LEARNING_RATE_DECAY = 0.99 
#正则化
REGULARIZER = 0.0001
#最大迭代次数
STEPS = 50000 
#滑动平均衰减率
MOVING_AVERAGE_DECAY = 0.99 
#模型保存路径
MODEL_SAVE_PATH="./model/"
#模型名称
MODEL_NAME="mnist_model" 

def backward(mnist):
    #卷积层输入为四阶张量
    #第一阶表示每轮喂入的图片数量,第二阶和第三阶分别表示图片的行分辨率和列分辨率,第四阶表示通道数
    x = tf.placeholder(tf.float32,[
    BATCH_SIZE,
    mnist_lenet5_forward.IMAGE_SIZE,
    mnist_lenet5_forward.IMAGE_SIZE,
    mnist_lenet5_forward.NUM_CHANNELS]) 
    y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
    #前向传播过程
    y = mnist_lenet5_forward.forward(x,True, REGULARIZER) 
    #声明一个全局计数器
    global_step = tf.Variable(0, trainable=False) 
    #对网络最后一层的输出y做softmax,求取输出属于某一类的概率
    ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    #向量求均值
    cem = tf.reduce_mean(ce) 
    #正则化的损失值
    loss = cem + tf.add_n(tf.get_collection('losses')) 
    #指数衰减学习率 
    learning_rate = tf.train.exponential_decay( 
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE, 
        LEARNING_RATE_DECAY,
        staircase=True) 
    #梯度下降算法的优化器
    #train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    train_step = tf.train.MomentumOptimizer(learning_rate,0.9).minimize(loss, global_step=global_step)
    #采用滑动平均的方法更新参数
    ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    ema_op = ema.apply(tf.trainable_variables())
    #将train_step和ema_op两个训练操作绑定到train_op上
    with tf.control_dependencies([train_step, ema_op]): 
        train_op = tf.no_op(name='train')

    #实例化一个保存和恢复变量的saver
    saver = tf.train.Saver() 
    #创建一个会话 
    with tf.Session() as sess: 
        init_op = tf.global_variables_initializer() 
        sess.run(init_op) 
        #通过 checkpoint 文件定位到最新保存的模型,若文件存在,则加载最新的模型
        ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH) 
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path) 
       
        for i in range(STEPS):
            #读取一个batch数据,将输入数据xs转成与网络输入相同形状的矩阵
            xs, ys = mnist.train.next_batch(BATCH_SIZE) 
            reshaped_xs = np.reshape(xs,(  
            BATCH_SIZE,
            mnist_lenet5_forward.IMAGE_SIZE,
            mnist_lenet5_forward.IMAGE_SIZE,
            mnist_lenet5_forward.NUM_CHANNELS))
            #读取一个batch数据,将输入数据xs转成与网络输入相同形状的矩阵
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys}) 
            if i % 100 == 0: 
                print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)

def main():
    mnist = input_data.read_data_sets("./data/", one_hot=True) 
    backward(mnist)

if __name__ == '__main__':
    main()

python mnist_lenet5_test.py

#coding:utf-8
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_lenet5_forward
import mnist_lenet5_backward
import numpy as np

TEST_INTERVAL_SECS = 5

#创建一个默认图,在该图中执行以下操作
def test(mnist):
    with tf.Graph().as_default() as g: 
        x = tf.placeholder(tf.float32,[
            mnist.test.num_examples,
            mnist_lenet5_forward.IMAGE_SIZE,
            mnist_lenet5_forward.IMAGE_SIZE,
            mnist_lenet5_forward.NUM_CHANNELS]) 
        y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
        #训练好的网络,故不使用 dropout
        y = mnist_lenet5_forward.forward(x,False,None)

        ema = tf.train.ExponentialMovingAverage(mnist_lenet5_backward.MOVING_AVERAGE_DECAY)
        ema_restore = ema.variables_to_restore()
        saver = tf.train.Saver(ema_restore)

        #判断预测值和实际值是否相同 
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 
        ## 求平均得到准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

        while True:
            with tf.Session() as sess:
                ckpt = tf.train.get_checkpoint_state(mnist_lenet5_backward.MODEL_SAVE_PATH)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)    
                    # 根据读入的模型名字切分出该模型是属于迭代了多少次保存的 
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] 
                    reshaped_x = np.reshape(mnist.test.images,(
                    mnist.test.num_examples,
                    mnist_lenet5_forward.IMAGE_SIZE,
                    mnist_lenet5_forward.IMAGE_SIZE,
                    mnist_lenet5_forward.NUM_CHANNELS))
                    #利用多线程提高图片和标签的批获取效率
                    coord = tf.train.Coordinator()#3
                    threads = tf.train.start_queue_runners(sess=sess, coord=coord)#4
                    accuracy_score = sess.run(accuracy, feed_dict={x:reshaped_x,y_:mnist.test.labels}) 
                    print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
                    #关闭线程协调器
                    coord.request_stop()#6
                    coord.join(threads)#7
                else:
                    print('No checkpoint file found')
                    return
            time.sleep(TEST_INTERVAL_SECS) 

def main():
    mnist = input_data.read_data_sets("./data/", one_hot=True)
    test(mnist)

if __name__ == '__main__':
    main()

 

おすすめ

転載: www.cnblogs.com/fcfc940503/p/11086752.html