セマンティックセグメンテーションにおける一般的な損失の戦闘

1. nn.BCEWithLogitsLoss()与nn.CrossEntropyLoss()

      エンジニアリングコードリファレンス:https//github.com/milesial/Pytorch-UNet.git

      (1)nn.BCEWithLogitsLoss()は通常、フォアグラウンドとバックグラウンドのみの2つのカテゴリのセグメンテーションに使用されます。

      (2)nn.CrossEntropyLoss()は通常、複数のカテゴリのセグメンテーションに使用されます。

        特定のアプリケーションのコードとコメントを参照してください。

import torch
import torch.nn as nn


if __name__ == "__main__":
    # 测试nn.BCEWithLogitsLoss()
    # img = np.expand_dims(img, axis=0) 用来扩展维度
    loss = nn.BCEWithLogitsLoss()
    inputs = torch.randn((32, 1, 224, 224), requires_grad=True)
    targets = torch.empty((32, 1, 224,224)).random_(2)
    output = loss(inputs, targets)
    output.backward()


    # 测试nn.CrossEntropyLoss()
    # 以分20类为例(包括背景),targets里面的只为0~19
    loss = nn.CrossEntropyLoss()
    inputs = torch.randn((32, 20, 224, 224), requires_grad=True)
    targets = torch.empty((32, 224, 224)).random_(20).long()
    output = loss(inputs, targets)
    output.backward()

2. LovaszLossHinge()与LovaszLossSoftmax()

     エンジニアリングコードリファレンス:https//github.com/zonasw/unet-nested-multiple-classification.git

     使用法は、基本的に上記のnn.BCEWithLogitsLoss()およびnn.CrossEntropyLoss()の使用法と同じです。

     (1)LovaszLossHinge()は通常、前景と背景のみの2つのカテゴリのセグメンテーションに使用されます。

     (2)LovaszLossSoftmax()は通常、複数のカテゴリのセグメンテーションに使用されます。

       特定のアプリケーションのコードとコメントを参照してください。

# -*- coding: utf-8 -*-
# @Time    : 2020-02-26 17:46
# @Author  : Zonas
# @Email   : [email protected]
# @File    : losses.py
"""

"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function

import lovasz_losses as L


class LovaszLossSoftmax(nn.Module):
    def __init__(self):
        super(LovaszLossSoftmax, self).__init__()

    def forward(self, input, target):
        out = F.softmax(input, dim=1)
        loss = L.lovasz_softmax(out, target)
        return loss


class LovaszLossHinge(nn.Module):
    def __init__(self):
        super(LovaszLossHinge, self).__init__()

    def forward(self, input, target):
        loss = L.lovasz_hinge(input, target)
        return loss


class DiceCoeff(Function):
    """Dice coeff for individual examples"""

    def forward(self, input, target):
        self.save_for_backward(input, target)
        eps = 0.0001
        self.inter = torch.dot(input.view(-1), target.view(-1))
        self.union = torch.sum(input) + torch.sum(target) + eps

        t = (2 * self.inter.float() + eps) / self.union.float()
        return t

    # This function has only a single output, so it gets only one gradient
    def backward(self, grad_output):

        input, target = self.saved_variables
        grad_input = grad_target = None

        if self.needs_input_grad[0]:
            grad_input = grad_output * 2 * (target * self.union - self.inter) \
                         / (self.union * self.union)
        if self.needs_input_grad[1]:
            grad_target = None

        return grad_input, grad_target


def dice_coeff(input, target):
    """Dice coeff for batches"""
    if input.is_cuda:
        s = torch.FloatTensor(1).cuda().zero_()
    else:
        s = torch.FloatTensor(1).zero_()

    for i, c in enumerate(zip(input, target)):
        s = s + DiceCoeff().forward(c[0], c[1])

    return s / (i + 1)


if __name__ == "__main__":
    # 测试多类别分割
    loss = LovaszLossSoftmax()
    inputs = torch.randn((32, 20, 224, 224), requires_grad=True)
    targets = torch.empty((32, 224, 224)).random_(20).long()
    output = loss(inputs, targets)
    output.backward()


    # 测试2类别分割
    loss = LovaszLossHinge()
    inputs = torch.randn((32, 1, 224, 224), requires_grad=True)
    targets = torch.empty((32, 1, 224,224)).random_(2)
    output = loss(inputs, targets)
    output.backward()

           lovasz_losses.pyの実装は次のとおりです。

"""
Lovasz-Softmax and Jaccard hinge loss in PyTorch
Maxim Berman 2018 ESAT-PSI KU Leuven (MIT License)
"""

from __future__ import print_function, division

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
try:
    from itertools import  ifilterfalse
except ImportError: # py3k
    from itertools import  filterfalse as ifilterfalse


def lovasz_grad(gt_sorted):
    """
    Computes gradient of the Lovasz extension w.r.t sorted errors
    See Alg. 1 in paper
    """
    p = len(gt_sorted)
    gts = gt_sorted.sum()
    intersection = gts - gt_sorted.float().cumsum(0)
    union = gts + (1 - gt_sorted).float().cumsum(0)
    jaccard = 1. - intersection / union
    if p > 1: # cover 1-pixel case
        jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
    return jaccard


def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True):
    """
    IoU for foreground class
    binary: 1 foreground, 0 background
    """
    if not per_image:
        preds, labels = (preds,), (labels,)
    ious = []
    for pred, label in zip(preds, labels):
        intersection = ((label == 1) & (pred == 1)).sum()
        union = ((label == 1) | ((pred == 1) & (label != ignore))).sum()
        if not union:
            iou = EMPTY
        else:
            iou = float(intersection) / float(union)
        ious.append(iou)
    iou = mean(ious)    # mean accross images if per_image
    return 100 * iou


def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False):
    """
    Array of IoU for each (non ignored) class
    """
    if not per_image:
        preds, labels = (preds,), (labels,)
    ious = []
    for pred, label in zip(preds, labels):
        iou = []    
        for i in range(C):
            if i != ignore: # The ignored label is sometimes among predicted classes (ENet - CityScapes)
                intersection = ((label == i) & (pred == i)).sum()
                union = ((label == i) | ((pred == i) & (label != ignore))).sum()
                if not union:
                    iou.append(EMPTY)
                else:
                    iou.append(float(intersection) / float(union))
        ious.append(iou)
    ious = [mean(iou) for iou in zip(*ious)] # mean accross images if per_image
    return 100 * np.array(ious)


# --------------------------- BINARY LOSSES ---------------------------


def lovasz_hinge(logits, labels, per_image=True, ignore=None):
    """
    Binary Lovasz hinge loss
      logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
      labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
      per_image: compute the loss per image instead of per batch
      ignore: void class id
    """
    if per_image:
        loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore))
                          for log, lab in zip(logits, labels))
    else:
        loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
    return loss


def lovasz_hinge_flat(logits, labels):
    """
    Binary Lovasz hinge loss
      logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
      labels: [P] Tensor, binary ground truth labels (0 or 1)
      ignore: label to ignore
    """
    if len(labels) == 0:
        # only void pixels, the gradients should be 0
        return logits.sum() * 0.
    signs = 2. * labels.float() - 1.
    errors = (1. - logits * Variable(signs))
    errors_sorted, perm = torch.sort(errors, dim=0, descending=True)
    perm = perm.data
    gt_sorted = labels[perm]
    grad = lovasz_grad(gt_sorted)
    loss = torch.dot(F.relu(errors_sorted), Variable(grad))
    return loss


def flatten_binary_scores(scores, labels, ignore=None):
    """
    Flattens predictions in the batch (binary case)
    Remove labels equal to 'ignore'
    """
    scores = scores.view(-1)
    labels = labels.view(-1)
    if ignore is None:
        return scores, labels
    valid = (labels != ignore)
    vscores = scores[valid]
    vlabels = labels[valid]
    return vscores, vlabels


class StableBCELoss(torch.nn.modules.Module):
    def __init__(self):
         super(StableBCELoss, self).__init__()
    def forward(self, input, target):
         neg_abs = - input.abs()
         loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
         return loss.mean()


def binary_xloss(logits, labels, ignore=None):
    """
    Binary Cross entropy loss
      logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
      labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
      ignore: void class id
    """
    logits, labels = flatten_binary_scores(logits, labels, ignore)
    loss = StableBCELoss()(logits, Variable(labels.float()))
    return loss


# --------------------------- MULTICLASS LOSSES ---------------------------


def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=None):
    """
    Multi-class Lovasz-Softmax loss
      probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1).
              Interpreted as binary (sigmoid) output with outputs of size [B, H, W].
      labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
      classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
      per_image: compute the loss per image instead of per batch
      ignore: void class labels
    """
    if per_image:
        loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes)
                          for prob, lab in zip(probas, labels))
    else:
        loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes)
    return loss


def lovasz_softmax_flat(probas, labels, classes='present'):
    """
    Multi-class Lovasz-Softmax loss
      probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
      labels: [P] Tensor, ground truth labels (between 0 and C - 1)
      classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
    """
    if probas.numel() == 0:
        # only void pixels, the gradients should be 0
        return probas * 0.
    C = probas.size(1)
    losses = []
    class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes
    for c in class_to_sum:
        fg = (labels == c).float() # foreground for class c
        if (classes is 'present' and fg.sum() == 0):
            continue
        if C == 1:
            if len(classes) > 1:
                raise ValueError('Sigmoid output possible only with 1 class')
            class_pred = probas[:, 0]
        else:
            class_pred = probas[:, c]
        errors = (Variable(fg) - class_pred).abs()
        errors_sorted, perm = torch.sort(errors, 0, descending=True)
        perm = perm.data
        fg_sorted = fg[perm]
        losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted))))
    return mean(losses)


def flatten_probas(probas, labels, ignore=None):
    """
    Flattens predictions in the batch
    """
    if probas.dim() == 3:
        # assumes output of a sigmoid layer
        B, H, W = probas.size()
        probas = probas.view(B, 1, H, W)
    B, C, H, W = probas.size()
    probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C)  # B * H * W, C = P, C
    labels = labels.view(-1)
    if ignore is None:
        return probas, labels
    valid = (labels != ignore)
    vprobas = probas[valid.nonzero().squeeze()]
    vlabels = labels[valid]
    return vprobas, vlabels

def xloss(logits, labels, ignore=None):
    """
    Cross entropy loss
    """
    return F.cross_entropy(logits, Variable(labels), ignore_index=255)


# --------------------------- HELPER FUNCTIONS ---------------------------
def isnan(x):
    return x != x
    
    
def mean(l, ignore_nan=False, empty=0):
    """
    nanmean compatible with generators.
    """
    l = iter(l)
    if ignore_nan:
        l = ifilterfalse(isnan, l)
    try:
        n = 1
        acc = next(l)
    except StopIteration:
        if empty == 'raise':
            raise ValueError('Empty mean')
        return empty
    for n, v in enumerate(l, 2):
        acc += v
    if n == 1:
        return acc
    return acc / n

3. DiceLoss()

      エンジニアリングコードリファレンス:https//github.com/ooooverflow/BiSeNet.git

      2つのカテゴリを分割し、複数のカテゴリを分割するために使用できます。

      特定の使用法については、コードとコメントを参照してください。

import torch.nn as nn
import torch
import torch.nn.functional as F

def flatten(tensor):
    """Flattens a given tensor such that the channel axis is first.
    The shapes are transformed as follows:
       (N, C, D, H, W) -> (C, N * D * H * W)
    """
    C = tensor.size(1)
    # new axis order
    axis_order = (1, 0) + tuple(range(2, tensor.dim()))
    # Transpose: (N, C, D, H, W) -> (C, N, D, H, W)
    transposed = tensor.permute(axis_order)
    # Flatten: (C, N, D, H, W) -> (C, N * D * H * W)
    return transposed.contiguous().view(C, -1)


class DiceLoss(nn.Module):
    def __init__(self):
        super().__init__()
        self.epsilon = 1e-5

    def forward(self, output, target):
        assert output.size() == target.size(), "'input' and 'target' must have the same shape"
        output = F.softmax(output, dim=1)
        output = flatten(output)
        target = flatten(target)
        # intersect = (output * target).sum(-1).sum() + self.epsilon
        # denominator = ((output + target).sum(-1)).sum() + self.epsilon

        intersect = (output * target).sum(-1)
        denominator = (output + target).sum(-1)
        dice = intersect / denominator
        dice = torch.mean(dice)
        return 1 - dice
        # return 1 - 2. * intersect / denominator


if __name__ == "__main__":
    # 可用于多个类别的分割,下面以2类分割为例说明
    # target 每个像素点的值都要转化为独热编码的形式
    loss = DiceLoss()
    inputs = torch.randn((32, 2, 224, 224), requires_grad=True)
    targets = torch.empty((32, 2, 224, 224)).random_(2).long()
    output = loss(inputs, targets)
    output.backward()

      カラーマップをワンホットエンコーディングの形式に変換する場合は、ブログを参照してください。

 

ご不明な点がございましたら、メッセージを残してください。

おすすめ

転載: blog.csdn.net/Guo_Python/article/details/112847287