tf.dataデータ処理モジュール

tf.data.Dataset APIは非常に豊富で、主にデータセットの作成、変換の適用、データの反復などが含まれます。

まず、Datasetクラスの最初の確認

最も簡単な方法は、pythonリストに従って作成することです。

ファイルデータを処理するには、次を使用しますtf.data.TextLineDataset

TFRecord形式の場合、TFRecordDatasetを使用できます。

すべてのファイル形式に一致するデータの場合、次を使用できますtf.data.Dataset.list_files

 

変革

データを使用すると、map関数を使用してデータを変換できます。

データセットがサポートするタイプ:

ネストされたタプル、名前付きタプル、辞書などを含みます。要素はどのタイプでもかまいません。

tf.Tensor、  tf.data.Dataset、  tf.SparseTensortf.RaggedTensor、と  tf.TensorArray 

上記からわかるように、データセットにはパラメーターがあります。variant_tensor, 具有一个表示元素类型的属性:element_spec 

以下は、Datasetクラスのメソッドの詳細です。 

 

次に、Datasetクラスのメソッド(合計26)

1. __iter__

名前が示すように、データセットのイテレータを返します。と熱心なモードで使用することができます。

 

2.適用する

apply(
    transformation_func
)

データに変換を適用する

 

 

3. as_numpy_iterator(バージョン2.0.0にはこのメソッドがないようです)

データ要素をnumpyに変換するイテレータを返し、要素のみを簡単に表示できるようにしますこの操作では、直接印刷よりも要素のタイプとタイプが少なくなります。

このメソッドは、eagerモードである必要があり、データ自体のみを表示します。

as_numpy_iterator() データ要素の元のネストされた形式は保持されます。

データに非Tensor値が含まれている場合、TypeErrorが報告され、RuntimeErrorが非イーガーモードで使用されている場合に報告されます。 

 

 

4.バッチ

batch(
    batch_size, drop_remainder=False
)

このメソッドは、データをバッチにグループ化します。

パラメータdrop_remainderは、pytorchのdrop_lastに似ています。

 

 

5.キャッシュ

cache(
    filename=''
)

キャッシュされたデータ。現在の反復に従って、要素は特定の場所にキャッシュされ、その後の反復ではキャッシュされたデータが使用されます。

当缓存到文件时,在整个运行过程缓存数据将保持,首次迭代 也将从缓存文件中读取数据。如果在.cache()调用之前改变了数据源,将不会有任何影响。除非cache文件被移除或者文件名更换:

第二次虽然改变了源数据,仍打印出原始数据的内容。 如果调用该函数时没有提供文件名,则数据将缓存到memory中。

 

6. concatenate

concatenate(
    dataset
)

通过连接给定的数据集得到新数据集,注意类型要一致。

 

 

7. enumerate

enumerate(
    start=0
)

按要求枚举数据,和python的enumerate类似。

 

 

8. filter

filter(
    predicate
)

过滤数据集,输入为函数(映射数据为布尔类型)

 

 

9. flat_map

flat_map(
    map_func
)

拉伸数据。如果要确保数据集的顺序保持不变可以用该函数,例如将批量数据拉伸至元素级别:

 

 

10.  from_generator

@staticmethod
from_generator(
    generator, output_types, output_shapes=None, args=None
)

建立一个数据集,其中的元素由生成器generator产生。generator的参数必须是可callable的类,返回支持iter()的类。产生的元素必须与output_types一致,output_shapes参数可选。

 

 

11. from_tensor_slices

@staticmethod
from_tensor_slices(
    tensors
)

这个方法早在前面许多例子中用到了,从给定tensor切片中创建数据集。从第一维度进行slice,保留了输入tensor的结构,移除每个tensor的第一维度并作为数据集的维度。所有的输入tensor必须有相同的第一维度。

 

利用zip将不同dataset打包到一起:

 

输出:

两个tensor只要第一维一样就可以结合到一个dataset中:

 

 

12. from_tensor

@staticmethod
from_tensors(
    tensors
)

与上面不同的是不含切片,只是将整个tensor作为一个dataset。例如:

 

和上一个方法的一个共同点:如果输入tensors中包含numpy数组,并且eager模型未开启,则将会被嵌入到graphs中作为一个或多个tf.constant.对于大型数据集(>1GB),这可能会浪费存储。如果tensors中包含一个或多个大型numpy数组,可以考虑利用这里this guide.的操作。

 

13. interleave

interleave(
    map_func, cycle_length=-1, block_length=1, num_parallel_calls=None
)

将map_func映射到整个数据集。并分发结果。

 

 

14. list_files

@staticmethod
list_files(
    file_pattern, shuffle=None, seed=None
)

匹配一个或更多的glob模式,file_pattern参数应当小于glob patterns,否则可以用Dataset.from_tensor_slices(filenames) 就好。

 

 

15.  map

map(
    map_func, num_parallel_calls=None
)

这个函数也已经用了多次,将map_func 应用到整个数据集中。

 

16.  padded_batch

padded_batch(
    batch_size, padded_shapes, padding_values=None, drop_remainder=False
)

此转换将输入数据集的多个连续元素合并为一个元素。类似于tf.data.Dataset.batch,将会有一个新增的batch维度,不同的是此时输入的元素可能shape不同,该转换将会pad每个元素来得到应有的padding_shapes。这个参数决定了最后的输出批量维度。如果维度是一个常数e.g. tf.compat.v1.Dimension(37),元素将会在该维度被pad到该长度,如果维度是未知的e.g. tf.compat.v1.Dimension(None),将会被pad到所有元素的最大长度。

 

 

17. prefetch

prefetch(
    buffer_size
)

从数据集中建立预读取元素。大多数数据集输入结构都应该以预读取prefetch结束。这允许在处理当前元素时准备后面的元素。这通常会提高延迟和吞吐量,代价是使用额外的内存来存储预取的元素。

和batch方法一起使用:

examples.prefetch(2) will prefetch two elements (2 examples), while examples.batch(20).prefetch(2) will prefetch 2 elements (2 batches, of 20 examples each). 

 

18. range

@staticmethod
range(
    *args
)

也已经用过多次了:建立一定范围内的元素数据集

 

 

19. reduce

reduce(
    initial_state, reduce_func
)

将输入元素整合成单一元素。该转换将会已知在每个元素上调用reduce_func函数,直到遍历数据集结束。initial_state参数用于初始状态。

注意reduce_func参数需要两个参数为 (old_state, input_element),这两个茶树会被映射到new_state,当然最开始的old_state就是initial_state,所以这些state的格式应当一致。最终返回的就是final state。这样就好理解上图中的例子了。

 

20. repeat

repeat(
    count=None
)

就是按照重复次数来重复输入元素。

 

 

21. shard

shard(
    num_shards, index
)

创建一个仅包含1/num_shards原有数据集大小的数据集。 index实现开始索引。

在分布式训练的时候很有用,因为者可以划分给每个设备一个子集。当读取到一个单一的输入文件时,可以这样做:

重要注意事项:在使用任何随机化操作符(如shuffle)之前,一定要切分。通常,最好在数据集管道的早期使用shard操作符。例如,从一组TFRecord文件中读取时,在将数据集转换为输入样本之前切分。这样就避免了读取每个工人的每个文件。下面是一个完整管道内高效分片策略的示例:

 

 

21. shuffle

shuffle(
    buffer_size, seed=None, reshuffle_each_iteration=None
)

随即打散输入数据。数据填buffer_size大小的元素到buffer中,然后在该buffer中进行随机采样。对于完美的打散计划,buffer尺寸应大于等于所需的数据集尺寸。例如你的数据集有10000个元素,但是buffer_size设置为1000,然后仅会从这1000个元素中进行随机选择。一旦某个元素被选定,其位置就会被下个(额外的)元素取代从而保持buffer大小为1000。参数reshuffle_each_iteration 控制是否不同epoch保持相同的shuffle顺序。在TF1.X版本中,惯用的方法是通过repeat转换:

在TF2.0版本中,tf.data.Dataset是python可迭代的,所以通过python迭代也可以创建批量:

 

22. skip

 

skip(
    count
)

创建一个数据集:跳过count参数之前的元素:

如果count参数大于当前数据集的大小,新的数据集将不包含任何数据。如果将其设为-1,则包含整个数据。

 

23.  take

take(
    count
)

创建一个数据集:最多包含count数目大小的数据集:

如果count=-1 或者count大于整个数据集尺寸,新的数据集将包含整个数据集。 

 

24. unbatch

将数据集划分到多个元素。就是batch的反向操作,最后结果是分解掉了batch的维度:

 

 

25. window

window(
    size, shift=None, stride=1, drop_remainder=False
)

结合输入元素到windows,windows指的是一个有限的数据集,尺寸为size或更小:如果没有足够输入元素来填充这个window或者drop_remainder参数为False。stride参数决定了输入元素的步长,shift参数决定window的偏移。后三个参数都是可选。size表示形成window所需要结合的数据元素数目(窗口大小)。shift表示每次迭代的滑动数目。stride表示每个窗口中元素步长。最后一个参数表示是否丢弃当前窗口,如果其尺寸小于指定的size。

 

 

26. zip

@staticmethod
zip(
    datasets
)

打包多个数据集,用到多次了。和python基本一样,差别在于datasets参数可以实任意嵌套的Dataset类。

 

整理编辑自:https://www.tensorflow.org/api_docs/python/tf/data/Dataset

おすすめ

転載: www.cnblogs.com/king-lps/p/12736544.html