Flink (14): operador de transformación de Flink (abajo)

Este artículo ha participado en el evento "Ceremonia de creación de recién llegados" para comenzar juntos el camino de la creación de oro.

​​​​​​​0. Enlaces a artículos relacionados

Resumen de los artículos de Flink

1. operadores de unión y conexión

API:

  • unión: el operador de unión puede combinar varios flujos de datos del mismo tipo y generar flujos de datos del mismo tipo, es decir, varios DataStream[T] se pueden combinar en un nuevo DataStream[T]. Los datos se fusionarán en un modo Primero en entrar, primero en salir (First In First Out) sin deduplicación.

  • conectar:
    • connect proporciona una función similar a union para conectar dos flujos de datos. La diferencia entre este y union es que connect solo puede conectar dos flujos de datos, mientras que union puede conectar múltiples flujos de datos.

    • Los tipos de datos de los dos flujos de datos conectados por conexión pueden ser incoherentes y los tipos de datos de los dos flujos de datos conectados por unión deben ser los mismos.

    • Después de conectarse, los dos DataStreams se convierten en ConnectedStreams.ConnectedStreams aplicará diferentes métodos de procesamiento a los datos de los dos flujos, y el estado se puede compartir entre los dos flujos.

Ejemplos de requisitos:

Unión de dos flujos de tipo String

Conecte una secuencia de tipo String a una secuencia de tipo Long

Código:

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;

/**
 * Author itcast
 * Desc
 */
public class TransformationDemo02 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //2.Source
        DataStream<String> ds1 = env.fromElements("hadoop", "spark", "flink");
        DataStream<String> ds2 = env.fromElements("hadoop", "spark", "flink");
        DataStream<Long> ds3 = env.fromElements(1L, 2L, 3L);

        //3.Transformation
        DataStream<String> result1 = ds1.union(ds2);//合并但不去重 https://blog.csdn.net/valada/article/details/104367378
        ConnectedStreams<String, Long> tempResult = ds1.connect(ds3);
        //interface CoMapFunction<IN1, IN2, OUT>
        DataStream<String> result2 = tempResult.map(new CoMapFunction<String, Long, String>() {
            @Override
            public String map1(String value) throws Exception {
                return "String->String:" + value;
            }

            @Override
            public String map2(Long value) throws Exception {
                return "Long->String:" + value.toString();
            }
        });

        //4.Sink
        result1.print();
        result2.print();

        //5.execute
        env.execute();
    }
}
复制代码

2. dividir, seleccionar y salidas laterales

API:

  • Dividir es dividir una secuencia en múltiples secuencias, nota: la función de división ha expirado y eliminado
  • Seleccionar es obtener los datos correspondientes después de la maniobra
  • Salidas secundarias: puede usar el método de proceso para procesar datos en la secuencia y recopilar datos en diferentes etiquetas de salida para diferentes resultados de procesamiento

Ejemplos de requisitos:

Divida los datos en el flujo de acuerdo con números pares e impares y obtenga los datos divididos

Código:

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;

/**
 * Author itcast
 * Desc
 */
public class TransformationDemo03 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //2.Source
        DataStreamSource<Integer> ds = env.fromElements(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

        //3.Transformation
        /*SplitStream<Integer> splitResult = ds.split(new OutputSelector<Integer>() {
            @Override
            public Iterable<String> select(Integer value) {
                //value是进来的数字
                if (value % 2 == 0) {
                    //偶数
                    ArrayList<String> list = new ArrayList<>();
                    list.add("偶数");
                    return list;
                } else {
                    //奇数
                    ArrayList<String> list = new ArrayList<>();
                    list.add("奇数");
                    return list;
                }
            }
        });
        DataStream<Integer> evenResult = splitResult.select("偶数");
        DataStream<Integer> oddResult = splitResult.select("奇数");*/

        //定义两个输出标签
        OutputTag<Integer> tag_even = new OutputTag<Integer>("偶数", TypeInformation.of(Integer.class));
        OutputTag<Integer> tag_odd = new OutputTag<Integer>("奇数"){};
        //对ds中的数据进行处理
        SingleOutputStreamOperator<Integer> tagResult = ds.process(new ProcessFunction<Integer, Integer>() {
            @Override
            public void processElement(Integer value, Context ctx, Collector<Integer> out) throws Exception {
                if (value % 2 == 0) {
                    //偶数
                    ctx.output(tag_even, value);
                } else {
                    //奇数
                    ctx.output(tag_odd, value);
                }
            }
        });

        //取出标记好的数据
        DataStream<Integer> evenResult = tagResult.getSideOutput(tag_even);
        DataStream<Integer> oddResult = tagResult.getSideOutput(tag_odd);

        //4.Sink
        evenResult.print("偶数");
        oddResult.print("奇数");

        //5.execute
        env.execute();
    }
}
复制代码

3. reequilibrar la partición de reequilibrio

Resumen funcional:

  • Similar a la partición en Spark, pero más poderosa y puede resolver directamente la asimetría de datos.
  • Flink también tiene datos sesgados. Por ejemplo, actualmente hay alrededor de mil millones de datos que deben procesarse. Durante el proceso de procesamiento, puede ocurrir la situación que se muestra en la figura. Si los datos están sesgados, las otras tres máquinas tienen que espere a que la máquina 1 complete la ejecución. Una vez completada la ejecución, se considera que la tarea se completó en su totalidad.

  • Entonces, en el trabajo real, una mejor solución para esta situación es el reequilibrio (el método de turno rotativo se usa internamente para dispersar los datos de manera uniforme).

demostración de código:

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * Author itcast
 * Desc
 */
public class TransformationDemo04 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC).setParallelism(3);

        //2.source
        DataStream<Long> longDS = env.fromSequence(0, 100);

        //3.Transformation
        //下面的操作相当于将数据随机分配一下,有可能出现数据倾斜
        DataStream<Long> filterDS = longDS.filter(new FilterFunction<Long>() {
            @Override
            public boolean filter(Long num) throws Exception {
                return num > 10;
            }
        });

        //接下来使用map操作,将数据转为(分区编号/子任务编号, 数据)
        //Rich表示多功能的,比MapFunction要多一些API可以供我们使用
        DataStream<Tuple2<Integer, Integer>> result1 = filterDS
                .map(new RichMapFunction<Long, Tuple2<Integer, Integer>>() {
                    @Override
                    public Tuple2<Integer, Integer> map(Long value) throws Exception {
                        //获取分区编号/子任务编号
                        int id = getRuntimeContext().getIndexOfThisSubtask();
                        return Tuple2.of(id, 1);
                    }
                }).keyBy(t -> t.f0).sum(1);

        DataStream<Tuple2<Integer, Integer>> result2 = filterDS.rebalance()
                .map(new RichMapFunction<Long, Tuple2<Integer, Integer>>() {
                    @Override
                    public Tuple2<Integer, Integer> map(Long value) throws Exception {
                        //获取分区编号/子任务编号
                        int id = getRuntimeContext().getIndexOfThisSubtask();
                        return Tuple2.of(id, 1);
                    }
                }).keyBy(t -> t.f0).sum(1);

        //4.sink
        //result1.print();//有可能出现数据倾斜
        result2.print();//在输出前进行了rebalance重分区平衡,解决了数据倾斜

        //5.execute
        env.execute();
    }
}
复制代码

4. Otros operadores de partición

API:

ilustrar:

volver a escalar la partición. En función del paralelismo de los operadores ascendentes y descendentes, los registros se envían a cada instancia del operador descendente en forma rotativa.

Ejemplo:

El paralelismo de aguas arriba es 2 y el de aguas abajo es 4, entonces un paralelismo de aguas arriba envía registros a los dos paralelismos de aguas abajo de manera circular; el otro paralelismo de aguas arriba envía registros a los otros dos paralelismos de aguas abajo de manera circular superior. Si el paralelismo ascendente es 4 y el paralelismo descendente es 2, entonces los dos paralelismos ascendentes envían registros a un paralelismo descendente; los otros dos paralelismos ascendentes envían registros al otro paralelismo descendente.

demostración de código:

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

/**
 * Author itcast
 * Desc
 */
public class TransformationDemo05 {
    public static void main(String[] args) throws Exception {
        //1.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //2.Source
        DataStream<String> linesDS = env.readTextFile("data/input/words.txt");
        SingleOutputStreamOperator<Tuple2<String, Integer>> tupleDS = linesDS.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                String[] words = value.split(" ");
                for (String word : words) {
                    out.collect(Tuple2.of(word, 1));
                }
            }
        });

        //3.Transformation
        DataStream<Tuple2<String, Integer>> result1 = tupleDS.global();
        DataStream<Tuple2<String, Integer>> result2 = tupleDS.broadcast();
        DataStream<Tuple2<String, Integer>> result3 = tupleDS.forward();
        DataStream<Tuple2<String, Integer>> result4 = tupleDS.shuffle();
        DataStream<Tuple2<String, Integer>> result5 = tupleDS.rebalance();
        DataStream<Tuple2<String, Integer>> result6 = tupleDS.rescale();
        DataStream<Tuple2<String, Integer>> result7 = tupleDS.partitionCustom(new Partitioner<String>() {
            @Override
            public int partition(String key, int numPartitions) {
                return key.equals("hello") ? 0 : 1;
            }
        }, t -> t.f0);

        //4.sink
        //result1.print();
        //result2.print();
        //result3.print();
        //result4.print();
        //result5.print();
        //result6.print();
        result7.print();

        //5.execute
        env.execute();
    }
}
复制代码

Este blog está adaptado del video de Año Nuevo 2020 de cierto caballo: [Wild Big Data] Flink1.12 de principiante a competente #2021#Integración por lotes de transmisión#Programador Dark horse#Big data_bilibili_bilibili

Nota: Los enlaces a otros artículos relacionados están aquí -> Resumen del artículo de Flink

Supongo que te gusta

Origin juejin.im/post/7084630473296576542
Recomendado
Clasificación