Árbol binario 8 preguntas básicas de la entrevista (incluido enlace de enlace)

1. Recorrido de pedido anticipado del árbol binario

Enlace Likou

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public List<Integer> preorderTraversal(TreeNode root) {
    
    
        List<Integer> list = new ArrayList<>();
        if(root != null){
    
    
            list.add(root.val);
            //System.out.println(root.val);
            List<Integer> leftList = preorderTraversal(root.left);
            list.addAll(leftList);
            List<Integer> rightList = preorderTraversal(root.right);
            list.addAll(rightList);
        }
        return list;
    }
}

2. Recorrido en orden del árbol binario

Enlace Likou

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public List<Integer> inorderTraversal(TreeNode root) {
    
    
        List<Integer> list = new ArrayList<>();
        if(root != null){
    
    
            //System.out.println(root.val);
            List<Integer> leftList = inorderTraversal(root.left);
            list.addAll(leftList);
            list.add(root.val);
            List<Integer> rightList = inorderTraversal(root.right);
            list.addAll(rightList);
        }
        return list;
    }
}

3. Recorrido posterior al pedido del árbol binario

Enlace Likou

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public List<Integer> postorderTraversal(TreeNode root) {
    
    
        List<Integer> list = new ArrayList<>();
        if(root != null){
    
    
            //System.out.println(root.val);
            List<Integer> leftList = postorderTraversal(root.left);
            list.addAll(leftList);
            List<Integer> rightList = postorderTraversal(root.right);
            list.addAll(rightList);
            list.add(root.val);

        }
        return list;
    }
}

4. El mismo árbol

Enlace Likou

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public boolean isSameTree(TreeNode p, TreeNode q) {
    
    
        if(p == null && q != null || p !=null && q == null) return false;
        if(p == null && q == null) {
    
    
            return true;
        }
        if(p.val != q.val) {
    
    
            return false;
        }
        boolean left = isSameTree(p.left,q.left);
        boolean right = isSameTree(p.right,q.right);
        return (left && right);
    }
}

5. Subárbol de otro árbol

Enlace Likou

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public boolean isSubtree(TreeNode s, TreeNode t) {
    
    
        if(s == null) return false;
        if(isSameTree(s,t)) return true;
        if(isSubtree(s.left,t)) return true;
        if(isSubtree(s.right,t)) return true;
        return false;
    }

    public boolean isSameTree(TreeNode p, TreeNode q) {
    
    
        if(p == null && q != null || p !=null && q == null) return false;
        if(p == null && q == null) {
    
    
            return true;
        }
        if(p.val != q.val) {
    
    
            return false;
        }
        boolean left = isSameTree(p.left,q.left);
        boolean right = isSameTree(p.right,q.right);
        return (left && right);
    }
}

6. La profundidad máxima del árbol binario

Enlace Likou

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public int maxDepth(TreeNode root) {
    
    
        if(root == null) return 0;
        if(root.left == null && root.right == null) {
    
    
            return 1;
        }
        int lefthigh = maxDepth(root.left);
        int righthigh = maxDepth(root.right);
        int max = Math.max(lefthigh,righthigh);
        return max+1;
    }
}

7. Árbol binario equilibrado

Enlace Likou

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    
    public boolean isBalanced(TreeNode root) {
    
    
        if(hight(root) >= 0) return true;
        return false;
    }

    public int hight(TreeNode root) {
    
    
        if(root == null) return 0;
        if(root.left == null && root.right == null) {
    
    
            return 1;
        }
        int left = hight(root.left);
        int right = hight(root.right);
        if(left == -1 || right == -1 || Math.abs(left-right) > 1) return -1;
        return Math.max(left,right)+1;
    }
}

8. Árbol binario simétrico

Enlace Likou

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    
    

    public boolean isSymmetricChild(TreeNode leftTree,TreeNode rightTree) {
    
    
        if(leftTree == null && rightTree != null || leftTree != null && rightTree == null) {
    
    
            return false;
        }
        if(leftTree == null && rightTree == null) {
    
    
            return true;
        }
        if(leftTree.val != rightTree.val) {
    
    
            return false;
        }
        return isSymmetricChild(leftTree.left,rightTree.right) && 
        isSymmetricChild(leftTree.right,rightTree.left);
    }

    public boolean isSymmetric(TreeNode root) {
    
    
        if(root == null) return true;
        return isSymmetricChild(root.left,root.right);
    }
}

Supongo que te gusta

Origin blog.csdn.net/starry1441/article/details/115271637
Recomendado
Clasificación