Typora mathematical formulas

LaTeX editing mathematical formulas basic syntax elements

LaTeX The mathematical model has two forms:

  • inline and display.
    • The former refers to a line between the text insert mathematical formulas, which are arranged independently, may or may not numbered.
  • Interline formula (inline)
    • $ Enclosed by the formula.
  • Interblock formula (displayed)
    • $$ enclosed by the formula is a number of free form
    • There are [.....] unnumbered independent formula Markdown form but does not seem to support.
    • Block element is centered between the default display.

Greek alphabet edit various types of table

Greek alphabet edit table

  • Subscripts and superscripts, root, ellipsis

    • Subscript: x_i: \ (x_i \)
    • Superscript: X ^ 2: \ (X ^ 2 \)
    • NOTE: If more than one vertical mark letters or symbols, requires a pair of enclosed {} {I1} X_: \ (X_ {I1} \) \ (AT X ^ {} \)
    • Root: \ sqrt [n-] {}. 5: \ (\ sqrt [n-]. 5} {\)
    • Omitted issue: \ Cdots: \ (\ Cdots \)
  • Operators

    • Basic operators + - * ÷

      • Summation:

        • \sum_1^n: \(\sum_1^n\)
        • \ sum_ {x, y}: \ (\ sum_ {x, y} \)
      • integral:

        • \int_1^n: \(\int_1^n\)
      • limit

        • lim_ {x \ a \ IFN?} \ (lim \ _ {x \ to \ infty} \)
      • Determinant

        • $$
          X=\left|
              \begin{matrix}
                  x_{11} & x_{12} & \cdots & x_{1d}\\
                  x_{21} & x_{22} & \cdots & x_{2d}\\
                  \vdots & \vdots & \ddots & \vdots \\
                  x_{11} & x_{12} & \cdots & x_{1d}\\
              \end{matrix}
          \right|
          $$
          \[ X=\left| \begin{matrix} x_{11} & x_{12} & \cdots & x_{1d}\\ x_{21} & x_{22} & \cdots & x_{2d}\\ \vdots & \vdots & \ddots & \vdots \\ x_{11} & x_{12} & \cdots & x_{1d}\\ \end{matrix} \right| \]
      • matrix

        • $$
              \begin{matrix} 
              1 & x & x^2\\ 
              1 & y & y^2\\ 
              1 & z & z^2\\ 
              \end{matrix}
          $$
          \[ \begin{matrix} 1 & x & x^2\\ 1 & y & y^2\\ 1 & z & z^2\\ \end{matrix} \]
  • arrow

    • img
  • Piecewise functions

    • $$
      f(n)=
          \begin{cases}
              n/2, & \text{if $n$ is even}\\
              3n+1,& \text{if $n$ is odd}
          \end{cases}
      $$
      \[ f(n)= \begin{cases} n/2, & \text{if $n$ is even}\\ 3n+1,& \text{if $n$ is odd} \end{cases} \]
  • equation set

    • $$
      \left\{
          \begin{array}{c}
              a_1x+b_1y+c_1z=d_1\\
              a_2x+b_2y+c_2z=d_2\\
              a_3x+b_3y+c_3z=d_3
          \end{array}
      \right.
      $$
      \[ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array} \right. \]
  • Common formula

    • Linear model

      • $$
          h(\theta) = \sum_{j=0} ^n \theta_j x_j
        $$
        \[ h(\theta) = \sum_{j=0} ^n \theta_j x_j \]
    • Mean square error

      • $$
          J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2
        $$
        \[ J(\theta) = \frac{1}{2m}\sum_{i=0}^m(y^i - h_\theta(x^i))^2 \]
    • I asked 积公 formula

      • \$$
          H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i}
        \$$
        $$ H_c=\sum_{l_1+\dots +l_p}\prod^p_{i=1} \binom{n_i}{l_i} $$
    • Batch gradient descent

      • $$
          \frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i -    h_\theta(x^i))x^i_j
        $$
        \[ \frac{\partial J(\theta)}{\partial\theta_j} = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i))x^i_j \]
    • The derivation process

      • $$
        \begin{align}
          \frac{\partial J(\theta)}{\partial\theta_j}
          & = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\
          & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\
          &=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j
        \end{align}
        $$
        \[ \begin{align} \frac{\partial J(\theta)}{\partial\theta_j} & = -\frac1m\sum_{i=0}^m(y^i - h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(y^i-h_\theta(x^i))\\ & = -\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i)) \frac{\partial}{\partial\theta_j}(\sum_{j=0}^n\theta_j x^i_j-y^i)\\ &=-\frac1m\sum_{i=0}^m(y^i -h_\theta(x^i)) x^i_j \end{align} \]
  • Subscript characters

    • $$
      \max \limits_{a<x<b}\{f(x)\}    
      $$
      \[ \max \limits_{a<x<b}\{f(x)\} \]
  • end

Guess you like

Origin www.cnblogs.com/Dean0731/p/12054065.html