Signals and Systems - the sine signal and the index signal

  • Sinusoidal signal
  • Index signal

Sinusoidal signal

Define a continuous sinusoidal signal:

$x(t)=Acos(\omega_0 t+\phi)$

Wherein, A is the amplitude, $ \ omega_0 $ on frequency, $ \ phi $ is a phase

drawing a continuous sinusoidal signal python Examples (Note that the computer is stored in discrete digital herein is able to draw a continuous sinusoidal signal of plot points and accuracy because looks like a continuous, amplified actually discrete):

x = np.arange(0,10,0.01)
omega = 1
phi = 1
y = np.sin (omega * x + phi)
plt.plot(x,y)
plt.xlim ((0.10))
plt.grid ()

  

  

Properties of sinusoidal signal:

a) periodically:

$x(t)=x(t+ T_0)$==>$Acos[\omega_0+\phi]=Acos[\omega_0+\omega_0 T_0 +\phi]$

$ \ Omega_0 T_0 = 2 \ pi m $, where m is an integer: $ T_0 = \ frac {2 \ pi m} {\ omega_0} $ => cycle: $ \ frac {2 \ pi m} {\ omega_0} $.

b) transfer and phase change is equivalent to the time

$ Acos [\ omega_0 (t + t_0)] = Acos [\ omega_0 t + \ omega_0 t_0] $, where $ \ omega_0 t_0 $ a phase change

$Acos[\omega_0 (t+t_0) + \phi]=Acos[\omega_0 t+\omega_0 t_0  \phi]$

c) parity

Even function $ x (t) = x (-t) $

Odd function $ x (t) = - x (-t) $

Discrete sine signal definition:

$x[n]=Acos(\omega_0 n+\phi)$

Wherein, A is the amplitude, $ \ omega_0 $ on frequency, $ \ phi $ is the phase.

 

Examples of discrete sine signal is plotted python

x = np.arange(0,10,0.1)
omega = 1
phi = 1
y = np.sin (omega * x + phi)
plt.plot(x,y,'o')
plt.xlim ((0.10))
plt.grid ()

 Of course, discrete and continuous nature of the same, to mention a few examples:

a) Transfer of phase change is equivalent to the time

$ Acos [\ omega_0 (n + n_0)] = Acos [\ omega_0 n + \ omega_0 n_0] $, 其中 $ n_0 = \ Delta \ phi $.

b) the discrete signal, phase shift => time change? ? ?

Note that the phase change where $ \ Delta \ phi $ necessarily be divisible by $ \ omega_0 $

c) periodically:

$\Omega_0 N = 2\pi m$ => $N = \frac{2\pi m}{\Omega_0}$

 

Continuous signals and discrete signal difference


a) $ x (t) = Acos (\ omega_0 t + \ phi) $, any $ \ $ omega O reflects periodicity.

b) $ x [n] = Acos (\ Omega_0 n + \ phi) $, $ N = \ frac {2 \ pi m} {\ Omega_0} $ holds only the integer of.

 

Index signal

Continuous exponential signal is defined:

$x(t)=C e^{at}$

Where, C and a are real numbers. $ A> 0 $ when plotted as curve

 

x = np.arange(0,10,0.01)
C = 1
a = 1
y = C*np.exp(a*x)
plt.plot(x,y)
plt.xlim ((0.10))
plt.grid ()

  

Discrete exponential signal definition:

$x[n]=C e^{\beta n}= C \alpha^{n}$

 C and $ \ alpha $ are real numbers

 

x = np.arange(0,10,0.1)
C = 1
a = 1
y = C*np.exp(a*x)
plt.plot(x,y,'o')
plt.xlim ((0.10))
plt.grid ()

  当$\alpha <0 and \left | a \right | <  1 $

 

 

 

 

x = np.arange(-10,2,1)
C = -1
a = -0.5
y = np.power (a, x)
plt.plot(x,y,'o')
plt.xlim ((- 10.2))
plt.grid ()

 At this time, if a similar $ x [n] = C e ^ {\ beta n} = C \ alpha ^ {n} $, to write such equations, the complex appeared.

Complex: $ X (T) = C {AT ^} $ E, where C is a complex, and then

a) $C =  \left | a \right | e^{j\theta}$,

b) $ a= r+j\omega_0$,

c) $ x (t) = \ left | C \ right | e ^ {j \ theta} e ^ {(r + j \ omega_0) t} = \ left | C \ right | e ^ {rt} e ^ { j (\ omega_0 t + \ theta)} $, where Euler's formula:

$e^{j(\omega_0 t+ \theta)}=cos(\omega_0 t + \theta) + j sin( \omega_0 t + \theta)$ 

Of course, there can be written in discrete form:

$e^{j(\Omega_0 n+ \theta)}=cos(\Omega_0 n + \theta) + j sin( \Omega_0 n + \theta)$

And Euler's equation, this time the complex exponential function appears periodically.

Guess you like

Origin www.cnblogs.com/rynerlute/p/11831894.html