Centering, standardization, albino

Centering input

The centering is achieved by changing the input (\ mathtt {X} \) \ origin remove the bias input, the input obtained even after conversion \ (\ mathtt {Z} \ ) zero-mean

The average of the input \ (\ bar {\ mathtt { x}} = \ frac {1} {N} \ mathtt {X ^ T1} \)

  • \[\mathtt x=\begin{bmatrix} {x_0}\\ {x_1}\\ {\vdots}\\ {x_d}\\ \end{bmatrix}\] \(\mathtt x\in R^{(d+1)*1}\)
  • \[\mathtt{X}=\begin{bmatrix}{\mathtt{x_1^T}}\\{\mathtt{x_2^T}}\\{\vdots}\\{\mathtt{x_N^T}}\\\end{bmatrix}\] \(\mathtt X\in R^{N*(d+1)}\)
  • \(\mathtt{1}=\begin{bmatrix}{1}\\{1}\\{\vdots}\\{1}\\\end{bmatrix}\) \(\mathtt 1\in R^{N*1}\)

Converted input \ (\ mathtt {z_n = x_n- \ bar {x}} \)

Or \ (\ mathtt {Z = X -1 \ bar {x} ^ T} \)

After converting the inputted zero mean proof

\(\mathtt{\bar{z}=\frac{1}{N}Z^T1=\frac{1}{N}X^T1-\frac{1}{N}\bar{x}1^T1=\bar{x}-\frac{1}{N}\bar{x}N}=0\)

Enter standardization

Is centered on the input \ (\ mathtt {X} \ ) feature scaled so that the input converted \ (\ mathtt {Z} \ ) standard deviation 1 wherein each

The following discussion centering on the basis of the establishment

Standard deviation calculation \ (\ Sigma = \ sqrt {\ FRAC {. 1} {N} \ sum_ {n-=. 1} ^ N (X_ {I} - \ bar {X}) ^ 2} \) , because they have given heart ( \ (\ bar {X} = 0 \) ), so \ (\ sigma = \ sqrt { \ frac {1} {N} \ sum_ {n = 1} ^ Nx_ {i} ^ 2} \)

Standard deviation \ (\ sigma_i = \ sqrt { \ frac {1} {N} \ sum_ {n = 1} ^ Nx_ {ni} ^ 2} \)

After transformation \ (\ mathtt {z_n} = \ begin {bmatrix} {x_ {n1} / \ sigma_1} \\ {\ vdots} \\ {x_ {nd} / \ sigma_d} \\\ end {bmatrix} = \ mathtt {Dx_n} \)

  • D is a diagonal matrix, \ (\ mathtt {_ D} = {II}. 1 / \ sigma_i \)

Or \ (\ mathtt {Z = XD } \)

After a proof is converted standard deviation

\(\sigma_i(\mathtt{z})=\sqrt{\frac{1}{N}\sum_{n=1}^Nz_{ni}^2}=\sqrt{\frac{1}{N}\sum_{n=1}^N\frac{x_{ni}^2}{\sigma_i^2}}=\sqrt{\frac{1}{\sigma_i^2}*(\frac{1}{N}\sum_{n=1}^Nx_{ni}^2)}=1\)

Enter Albino

If you enter a high correlation between features, so a separate punishment for the different characteristics of difficult to do this when you do regularization, whitening effect is to reduce the correlation between features, while all the features have the same variance

Albino is the same so that the input of each dimension is important, dimension reduction is a measure of the importance of input dimensions and then discarded unimportant dimensions, so it should not be whitened after dimensionality reduction

The following discussion centering on the basis of the establishment

Covariance matrix \ (\ mathtt {C = \ frac {1} {N} \ sum_ {n = 1} ^ {N} x_nx_n ^ T} = \ frac {1} {N} X ^ TX \)

  • \ (C_ {ij} = cov (x_i, x_j) \) covariance describes \ (x_i \) and \ (x_j \) Correlation
  • \ (cov (x, y) = E (xy) -E (x) E (y) = E (xy) \) there has been centered, so I \ (E (x) = E (y) = 0 \ )
  • \(\mathtt{x_nx_n^T}=\begin{bmatrix}{x_1x_1}&{x_1x_2}&{\cdots}&{x_2x_d}\\{x_2x_1}&{x_2x_2}&{\cdots}&{x_2x_d}\\{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{x_dx_1}&{x_dx_2}&{\cdots}&{x_dx_d}\\\end{bmatrix}\) 这下看懂了吧

Converted input \ (\ mathtt Z_n = {C ^ {- \ FRAC. 1} {2} {x_n}} \) (where prescribing matrix I do not really understand)

Or \ (\ mathtt {Z = XC ^ {\ frac {1} {2}}} \)

Covariance matrix of the whitened input

\(\mathtt{\frac{1}{N}Z^TZ=C^{-\frac{1}{2}}(\frac{1}{N}X^TX)C^{-\frac{1}{2}}=C^{-\frac{1}{2}}CC^{-\frac{1}{2}}=(C^{-\frac{1}{2}}C^{\frac{1}{2}})(C^{\frac{1}{2}}C^{-\frac{1}{2}})=E}\)

Finally, to obtain a matrix, i.e. \ (CoV (x_i, x_j) = \ Cases the begin {}. 1, 0 \\ J = I, I \ J} {NEQ \ Cases End {} \) , indicating that each input feature associated only with itself, not associated with other features

Icon

Guess you like

Origin www.cnblogs.com/redo19990701/p/11407115.html