Fourier series and the Fourier transform (a)

Clever mathematicians always like to see the world from another perspective, the Fourier transform method gives people a look at and understand the world from a different angle.

A function of polynomial expansion in higher mathematics where most people have learned the Taylor expansion, which is a specific function expansion method for the power series, there are important applications in calculus. The Fourier expansion is a function that meet specific criteria developed on a set of orthogonal trigonometric series, we can define the set of trigonometric series:

\left \{sin(0x),cos(0x),sin(x),cos(x),sin(2x),cos(2x)...sin(nx),cos(nx)\right\}

and

\ Int _ {- \ the} ^ {\} the sin (nx) DX = 0

\ Int _ {- \ pi} ^ {\ pi} cos (nx) dx = 0

\ _ You {- \ pi} ^ {\ pi} sin (nx) cos (mx) dx = 0

The above three formulas described orthogonality of the set of trigonometric lines.

 More simply, it is to be considered a specific function can be superimposed comes from the numerous sine function. Since the trigonometric functions have periodicity, we can first consider the period Tas a function f(t)of Fourier expansion.

Based on the face of the popular argument Fourier series, you can write:

f(t)=A_{0}+\sum_{i=1}^{\infty }A_{i}sin(\frac{2i\pi t}{T})+\varphi _{i})

And using the angle difference equation high school expands to:

f(t)=A_{0}+\sum_{i=1}^{\infty }A_{i} \left \{sin(\frac{2i\pi t}{T})cos\varphi_{i}+cos(\frac{2i\pi t}{T})sin\varphi _{i} \right \}

And so \frac{a_{0}}{2}=A_{0}a_{i}=A_{i}sin(\varphi_{i} )b_{i}=A_{i}cos(\varphi_{i}), \omega =\frac{2\pi}{T}end up:

f(t)=\frac{a_{0}}{2}+\sum_{i=1}^{\infty }\left \{a_{i}cos(i\omega t)+b_{i}sin(i\omega t)\right \}

This is the period of 2\pithe Fourier series expansion of a function. We now find \frac{a_{0}}{2}, a_{i}, b_{i}:

Type of f(t)=\frac{a_{0}}{2}+\sum_{i=1}^{\infty }\left \{a_{i}cos(i\omega t)+b_{i}sin(i\omega t)\right \}integration of:

\int_{-T}^{T}f(t)dt=\int_{-T}^{T}\frac{a_{0}}{2}dt+\sum_{i=1}^{\infty }\left \{\int_{-T}^{T}a_{i}cos(i\omega t)dt+\int_{-T}^{T}b_{i}sin(i\omega t)dt\right \}

The orthogonality of trigonometric lines:

\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)dt=T{\frac{a_{0}}{2}}

a_{0}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)dt

 Formula f(t)=\frac{a_{0}}{2}+\sum_{i=1}^{\infty }\left \{a_{i}cos(i\omega t)+b_{i}sin(i\omega t)\right \}multiplies sin(i\omega t)and integration of:

\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)sin(i\omega t)dt=\int_{\frac{-T}{2}}^{\frac{T}{2}}\frac{a_{0}}{2}sin(i\omega t)dt+\sum_{i=1}^{\infty }\left \{\int_{\frac{-T}{2}}^{\frac{T}{2}}a_{i}sin(i\omega t)cos(i\omega t)dt+\int_{\frac{-T}{2}}^{\frac{T}{2}}b_{i}sin^2(i\omega t)dt\right \}

The orthogonality of trigonometric lines:

\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)sin(i\omega t)dt=0+\sum_{i=1}^{\infty }\left \{0+\int_{\frac{-T}{2}}^{\frac{T}{2}}b_{i}sin^2(i\omega t)dt\right \}

Using the formula in descending sin^2x=\frac{1+cos2x}{2}, cos^2x=\frac{1-cos2x}{2}get:

\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)sin(i\omega t)dt=\frac{1}{2}\sum_{i=1}^{\infty }\left \{\int_{\frac{-T}{2}}^{\frac{T}{2}}b_{i}(1-cos2x)dt\right \}

\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)sin(i\omega t)dt=\frac{T}{2}bi

b_{i}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)sin(i\omega t)dt

Similarly get:

 a_{i}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)cos(i\omega t)dt


Finishing the above process, we get triangular form of the Fourier series expansion is:

f(t)=\frac{a_{0}}{2}+\sum_{i=1}^{\infty }\left \{a_{i}cos(i\omega t)+b_{i}sin(i\omega t)\right \}

a_{0}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)dt

a_{i}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)cos(i\omega t)dt

b_{i}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)sin(i\omega t)dt

Now we will need to expand the function of further generalization, and now wish to set f(t)is not a periodic function, we can think, in fact, non-periodic function can be viewed as an infinite cycle that is T\rightarrow \inftya periodic function. We need to lead Euler formula as a ready formula:

e ^ {jx} = cosx + jsinxj=\sqrt{-1}

cosx = \ frac {e ^ {jx} + e ^ {- jx}} {2}

sinx = \ frac {e ^ {jx} -e ^ {- jx}} {2j}

Formula f(t)=\frac{a_{0}}{2}+\sum_{i=1}^{\infty }\left \{a_{i}cos(i\omega t)+b_{i}sin(i\omega t)\right \}can be rewritten as:

f(t)=\frac{a_{0}}{2}+\sum_{i=1}^{\infty }\left \{a_{i}\frac{e^{i\omega t}+e^{-i\omega t}}{2}+b_{i}\frac{e^{i\omega t}-e^{-i\omega t}}{2j}\right \}

Order was:

f(t)=\frac{a_{0}}{2}+\frac{1}{2}\sum_{i=1}^{\infty }\left \{e^{i\omega t}(a_{i}-jb_{i})+e^{-i\omega t}(a_{i}+jb_{i})\right \}

For a_{i}-jb_{i}there are:

a_{i}-jb_{i}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)cos(i\omega t)dt-j\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)sin(i\omega t)dt

              =\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)\left \{cos(i\omega t)-jsin(i\omega t)\right \}dt

              =\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)e^{-ij\omega t}dt

Similarly there are:

a_{i}+jb_{i}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)e^{ij\omega t}dt

Note that when i=0the time a_{i}-jb_{i}=a_{i}+jb_{i}=a_{0}, and when i<0the timea_{i}-jb_{i}=a_{i}+jb_{i}

and so:

f(t)=\sum_{-\infty }^{\infty }e^{i\omega t}\frac{1}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)e^{-ij\omega t}dt

Order c_{i}=\frac{1}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)e^{-ij\omega t}dt, \omega_{i}=i\omegaare:

f(t)=}\sum_{-\infty }^{\infty }c_{i}e^{j\omega_{i}t}

For non-periodic functions, the form of:

f(t)=\lim_{T\rightarrow \infty }\sum_{-\infty }^{\infty }e^{j\omega_{i}t}\frac{1}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(t)e^{-j\omega_{i}t}dt

When the cycle of infinite angular frequency \omegaby discrete variables as a continuous variable, it might be \frac{1}{T}the writing \frac{\omega}{2\pi}, the final form of the Fourier series as follows:

f(t)=\frac{1}{2\pi}\int_{-\infty }^{\infty }\left [ \int_{-\infty }^{\infty }f(t)e^{-j\omega_{i}t}dt \right ]e^{j\omega_{i}t}d\omega

 

Guess you like

Origin blog.csdn.net/weixin_40771793/article/details/88280711
Recommended