Fourier series FS, continuous time Fourier transform CTFT, discrete time Fourier transform DTFT, discrete Fourier transform DFT, derivation and connection (1)

This article mainly discusses in detail the differences and connections between Fourier series FS, continuous time Fourier transform CTFT, discrete time Fourier transform DTFT, and discrete Fourier transform DFT, focusing mainly on the formula Formal derivation, relevant image examples are omitted, rigorous mathematical proofs such as Fourier series, and the properties of various transformations are not the focus of this article. This article mainly refers to the following textbooks.

"Digital Signal Processing – Computer-Based Methods (Fourth Edition)" Sanjit K. Mitra, Electronic Industry Press.

Since the formula in this article takes up a lot of characters, it cannot be published completely in one blog, so it is divided into two blogs. This article mainly introduces Fourier series FS, continuous time Fourier transform CTFT, and discrete time Fourier transform DTFT. For the content of Discrete Fourier Transform DFT and related summary, please go to the following link.

Fourier series FS, continuous time Fourier transform CTFT, discrete time Fourier transform DTFT, discrete Fourier transform DFT, derivation and connection (2)
https://blog.csdn.net/qq_33552519/article/details/130260657

The discrete cosine transform and discrete sine transform derived from the discrete Fourier transform are introduced in another article of mine. You are welcome to read and provide relevant modification comments.

1 Fourier series of periodic functions

Based on advanced mathematical knowledge, let f ( t ) f\left( t \right) f(t) This is one or more T T T is a function of period, and when [ − T / 2 , T / 2 ] [ - T/2,T/2 ] [T/2,T/2] Above bounded, my name is number skewer

a n = 2 T ∫ − T / 2 T / 2 f ( t ) cos ⁡ ( n ω 0 t ) d t , b n = 2 T ∫ − T / 2 T / 2 f ( t ) sin ⁡ ( n ω 0 t ) d t , w h e r e    ω 0 = 2 π / T . (1.1) \begin{gathered} {a_n} = \frac{2}{T}\int\limits_{ - T/2}^{T/2} {f\left( t \right)\cos \left( {n{\omega _0}t} \right)dt} , \\ {b_n} = \frac{2}{T}\int\limits_{ - T/2}^{T/2} {f\left( t \right)\sin \left( {n{\omega _0}t} \right)dt} , \\ where\;{\omega _0} = 2\pi /T. \\ \end{gathered} \tag{1.1} an=T2T/2T/2f(t)cos(nω0t)dt,bn=T2T/2T/2f(t)sin(nω0t)dt,whereoh0=2π/T.(1.1)

为函数 f ( t ) f\left( t \right) fFourier coefficients of (t). Using Fourier coefficients as coefficients, the trigonometric series

f ( t ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ ( n ω 0 t ) + b n sin ⁡ ( n ω 0 t ) ) , (1.2) f\left( t \right) \sim \frac{ { {a_0}}}{2} + \sum\limits_{n = 1}^\infty {\left( { {a_n}\cos \left( {n{\omega _0}t} \right) + {b_n}\sin \left( {n{\omega _0}t} \right)} \right)} ,\tag{1.2} f(t)2a0+n=1(ancos(nω0t)+bnsin(nω0t)),(1.2)

is called a function f ( t ) f\left( t \right) f(t) 的傅里叶级数 (Fourier Series, FS),其中 cos ⁡ ( n ω 0 t ) \cos \left( {n{\omega _0}t} \right) cos(nω0t) sin ⁡ ( n ω 0 t ) \sin \left( {n{\omega _0}t} \right) sin(nω0t) is called the basic trigonometric function system. Considering Euler's formula, we have

cos ⁡ ( n ω 0 t ) = e j n ω 0 t + e − j n ω 0 t 2 , sin ⁡ ( n ω 0 t ) = e j n ω 0 t − e − j n ω 0 t 2 j . (1.3) \begin{gathered} \cos \left( {n{\omega _0}t} \right) = \frac{ { {e^{jn{\omega _0}t}} + {e^{ - jn{\omega _0}t}}}}{2}, \\ \sin \left( {n{\omega _0}t} \right) = \frac{ { {e^{jn{\omega _0}t}} - {e^{ - jn{\omega _0}t}}}}{ {2j}}. \\ \end{gathered} \tag{1.3} cos(nω0t)=2It isjnω0t+It isjnω0t,sin(nω0t)=2jIt isjnω0tIt isjnω0t.(1.3)

And according to equation (1.1), we have

a − n = a n , b − n = − b n . (1.4) \begin{gathered} {a_{ - n}} = {a_n}, \\ {b_{ - n}} = - {b_n}. \\ \end{gathered} \tag{1.4} an=an,bn=bn.(1.4)

then

f ( t ) ∼ a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ ( n ω 0 t ) + b n sin ⁡ ( n ω 0 t ) ] = a 0 2 + ∑ n = 1 ∞ ( a n − j b n 2 e j n ω 0 t + a n + j b n 2 e − j n ω 0 t ) = a 0 − j b 0 2 e j 0 ω 0 t + ∑ n = 1 ∞ ( a n − j b n 2 e j n ω 0 t + a − n − j b − n 2 e − j n ω 0 t ) = ∑ n = − ∞ ∞ a n − j b n 2 e j n ω 0 t = ∑ n = − ∞ ∞ F n e j n ω 0 t . (1.5) \begin{aligned} f\left( t \right) &\sim \frac{ { {a_0}}}{2} + \sum\limits_{n = 1}^\infty {\left[ { {a_n}\cos \left( {n{\omega _0}t} \right) + {b_n}\sin \left( {n{\omega _0}t} \right)} \right]} \\ &= \frac{ { {a_0}}}{2} + \sum\limits_{n = 1}^\infty {\left( {\frac{ { {a_n} - j{b_n}}}{2}{e^{jn{\omega _0}t}} + \frac{ { {a_n} + j{b_n}}}{2}{e^{ - jn{\omega _0}t}}} \right)} \\ &= \frac{ { {a_0} - j{b_0}}}{2}{e^{j0{\omega _0}t}} + \sum\limits_{n = 1}^\infty {\left( {\frac{ { {a_n} - j{b_n}}}{2}{e^{jn{\omega _0}t}} + \frac{ { {a_{ - n}} - j{b_{ - n}}}}{2}{e^{ - jn{\omega _0}t}}} \right)} \\ &= \sum\limits_{n = - \infty }^\infty {\frac{ { {a_n} - j{b_n}}}{2}{e^{jn{\omega _0}t}}} = \sum\limits_{n = - \infty }^\infty { {F_n}{e^{jn{\omega _0}t}}} . \\ \end{aligned} \tag{1.5} f(t)2a0+n=1[ancos(nω0t)+bnsin(nω0t)]=2a0+n=1(2anjbnIt isjnω0t+2an+jbnIt isjnω0t)=2a0jb0It isj0ω0t+n=1(2anjbnIt isjnω0t+2anjbnIt isjnω0t)=n=2anjbnIt isjnω0t=n=FnIt isjnω0t.(1.5)

Substituting into equation (1.1), we can get

F n = a n − j b n 2 = 1 T ∫ − T / 2 T / 2 f ( t ) [ cos ⁡ ( n ω 0 t ) − j sin ⁡ ( n ω 0 t ) ] d t = 1 T ∫ − T / 2 T / 2 f ( t ) ( e j n ω 0 t + e − j n ω 0 t 2 − j e j n ω 0 t − e − j n ω 0 t 2 j ) d t = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n ω 0 t d t . (1.6) \begin{aligned} {F_n} &= \frac{ { {a_n} - j{b_n}}}{2} \\ &= \frac{1}{T}\int\limits_{ - T/2}^{T/2} {f\left( t \right)\left[ {\cos \left( {n{\omega _0}t} \right) - j\sin \left( {n{\omega _0}t} \right)} \right]dt} \\ &= \frac{1}{T}\int\limits_{ - T/2}^{T/2} {f\left( t \right)\left( {\frac{ { {e^{jn{\omega _0}t}} + {e^{ - jn{\omega _0}t}}}}{2} - j\frac{ { {e^{jn{\omega _0}t}} - {e^{ - jn{\omega _0}t}}}}{ {2j}}} \right)dt} \\ &= \frac{1}{T}\int\limits_{ - T/2}^{T/2} {f\left( t \right){e^{ - jn{\omega _0}t}}dt} . \\ \end{aligned} \tag{1.6} Fn=2anjbn=T1T/2T/2f(t)[cos(nω0t)jsin(nω0t)]dt=T1T/2T/2f(t)(2It isjnω0t+It isjnω0tj2jIt isjnω0tIt isjnω0t)dt=T1T/2T/2f(t)It isjnω0tdt.(1.6)

In this way, we get a more unified and concise complex form of the Fourier series formula, which is also called the Fourier transform pair of periodic functions in signals and systems. It is customary to call the process of solving Fourier coefficients forward transformation, while the Fourier series itself is called inverse transformation, that is

F [ n ] = F { f ( t ) } = 1 T ∫ − T / 2 T / 2 f ( t ) e − j n ω 0 t d t , f ( t ) = F − 1 { F [ n ] } = ∑ n = − ∞ ∞ F n e j n ω 0 t . (1.7) \begin{gathered} F\left[ n \right] = \mathcal{F}\left\{ {f\left( t \right)} \right\} = \frac{1}{T}\int\limits_{ - T/2}^{T/2} {f\left( t \right){e^{ - jn{\omega _0}t}}dt} , \\ f\left( t \right) = {\mathcal{F}^{ - 1}}\left\{ {F\left[ n \right]} \right\} = \sum\limits_{n = - \infty }^\infty { {F_n}{e^{jn{\omega _0}t}}} . \\ \end{gathered} \tag{1.7} F[n]=F{ f(t)}=T1T/2T/2f(t)It isjnω0tdt,f(t)=F1{ F[n]}=n=FnIt isjnω0t.(1.7)

Note that in advanced mathematics, due to the rigor of mathematics, the Fourier series uses wavy lines ∼ { \sim } symbol, indicating that the Fourier series may not necessarily converge to f ( t ) f\left( t \ right) f(t), but in signals and systems, time domain and frequency are more considered. The domain energies are equal, which is Parseval's theorem, and the properties of most of the functions involved are also relatively good. To avoid trouble, they are generally represented by an equal sign. In the following discussion, in addition to some special functions such as the Dirac function and the series represented by the Dirac function, after ignoring the finite discontinuity points in the cycle, it may be assumed that the function f ( t ) f\left( t \right) f(t) The city is connected.

Although periodic function f ( t ) f\left( t \right) f(t)'s own change t t t itself is continuous, but the resulting Fourier coefficients F [ n ] F\left[ n \right] F[n] It's just a dispersive efficiency point n ω 0 n{\omega _0} nω0Defined on . This property is similar to the spectrum of electronic energy level transitions, which is composed of electromagnetic wave components of several discrete frequencies. Therefore, the Fourier coefficient F [ n ] F\left[ n \right] F[n] Always symmetrical periodic signal f ( t ) f\left( t \right) f(t) 的频谱, F [ n ] F\left[ n \right] FThe space where [n] is located is also called the frequency domain. In addition, because e j n ω 0 t {e^{jn{\omega _0}t}} It isjnω0t corresponds to a unit circle on the complex plane, rather than the infinite axis in the real number domain. This makes signal analysis and processing in the complex number domain worse than in the real number domain. More convenient, this property is particularly important in the later Laplace transform and z transform.

2 Fourier transform of non-periodic functions

If a non-periodic function is considered f ( t ) f\left( t \right) f(t), I can allow that period T → ∞ {T \to \infty } T,于は具き频 ω 0 → 0 { {\omega _0} \to 0} oh00. Pull-in amount ω \omega ω, and ω n = n ω 0 { {\omega _n} = n{\omega _0}} ohn=nω0,So

Δ ω n = ω n − ω n − 1 = ω 0 → 0. \Delta {\omega _n} = {\omega _n} - {\omega _{n - 1}} = {\omega _0} \to 0 .Δωn=ohnohn1=oh00.

You are there Δ ω n → d ω { {\Delta {\omega _n} \to d\omega }} Δωndω, this time apart ω n {\omega _n} ohn 由为连续的 ω {\omega} ω without any further distinction. At this time

lim ⁡ T → ∞ f ( t ) = lim ⁡ T → ∞ ∑ n = − ∞ ∞ F n Δ ω n Δ ω n e j ω n t = lim ⁡ T → ∞ ∑ n = − ∞ ∞ ( 1 T ⋅ Δ ω n ∫ − T / 2 T / 2 f ( τ ) e − j ω n τ d τ ) e j ω n t Δ ω n = lim ⁡ T → ∞ ∑ n = − ∞ ∞ ( 1 2 π ∫ − T / 2 T / 2 f ( τ ) e − j ω n τ d τ ) e j ω n t Δ ω n = 1 2 π ∫ − ∞ ∞ ( ∫ − ∞ ∞ f ( τ ) e − j ω τ d τ ) e j ω t d ω . (2.1) \begin{aligned} \mathop {\lim }\limits_{T \to \infty } f\left( t \right) &= \mathop {\lim }\limits_{T \to \infty } \ sum\limits_{n = - \infty }^\infty {\frac{ { {F_n}}}{ {\Delta {\omega _n}}}\Delta {\omega _n}{e^{j{\omega _n}t}}} \\ &= \mathop {\lim }\limits_{T \to \infty } \sum\limits_{n = - \infty }^\infty {\left( {\frac{1}{ {T \cdot \Delta {\omega _n}}}\int\limits_{ - T/2}^{T/2} {f\left( \tau \right){e ^{ - j{\omega _n}\tau }}d\tau } } \right){e^{j{\omega _n}t}}\Delta {\omega _n}} \\ &= \mathop { \lim }\limits_{T \to \infty } \sum\limits_{n = - \infty }^\infty {\left( {\frac{1}{ {2\pi }}\int\limits_{ - T/2}^{T/2} {f\left( \tau \right){e^{ - j{\omega _n}\tau }}d\tau } } \right){e^{j{\omega _n}t}}\Delta {\omega _n}} \\ &= \frac{1}{ {2\pi }}\int\limits_{ - \infty }^\infty {\left( {\int\limits_{ - \infty }^\infty {f\left( \ tau \right){e^{ - j\omega \tau }}d\tau } } \right){e^{j\omega t}}d\omega } . \\ \end{aligned} \tag{2.1} Tlimf(t)=Tlimn=ΔωnFnΔωnIt isjωnt=Tlimn= TΔωn1T/2T/2f(τ)It isjωnτdτ It isjωntΔωn=Tlimn= 2π1T/2T/2f(τ)It isjωnτdτ It isjωntΔωn=2π1 f(τ)It isτdτ It istdω.(2.1)

So it can be defined, assuming the non-periodic function f ( t ) {f\left( t \right)} f(t) ( − ∞ , + ∞ ) {\left( { - \infty , + \infty } \right)} (,+) 上绝对对可积,则 f ( t ) f\left( t \right) fThe Fourier Transform (FT) and inverse transform of (t) are respectively for

F ( j ω ) = F { f ( t ) } = ∫ − ∞ ∞ f ( t ) e − j ω t d t , f ( t ) = F − 1 { F ( j ω ) } = 1 2 π ∫ − ∞ ∞ F ( j ω ) e j ω t d ω . (2.2) \begin{gathered} F\left( {j\omega } \right) = \mathcal{F}\left\{ {f\left( t \right)} \right\} = \int\limits_{ - \infty }^\infty {f\left( t \right){e^{ - j\omega t}}dt} , \\ f\left( t \right) = {\mathcal{F}^{ - 1}}\left\{ {F\left( {j\omega } \right)} \right\} = \frac{1}{ {2\pi }}\int\limits_{ - \infty }^\infty {F\left( {j\omega } \right){e^{j\omega t}}d\omega } . \\ \end{gathered} \tag{2.2} F()=F{ f(t)}=f(t)It istdt,f(t)=F1{ F()}=2π1F()It istdω.(2.2)

In order to distinguish it from the subsequent discrete time Fourier transform, it is sometimes called the continuous time Fourier transform (Continuous Time FT, CTFT). Note that the above derivation is not strict. Here we focus on its form and omit the relevant proof. In addition F ( j ω ) F\left( {j\omega } \right) F() 也可Direct copying F ( ω ) F\left( \omega \right) F(ω), the imaginary number symbol is added mainly to express the result of Fourier transform is a complex number, and is also distinguished from the subsequent discrete-time Fourier transform.

Compared with the discrete coefficients obtained by Fourier series F [ n ] F\left[ n \right] F[n],傅りば变卢 F ( j ω ) F\left( {j\omega } \right) F() The rate of change of the fixed rate ω \omega ωupper, and ω \omega ωgiven n n n 的Quantity纲也owned区别, ω \omega ω 是由 lim ⁡ ω 0 → 0 n ω 0 {\mathop {\lim }\limits_{ {\omega _0} \to 0} n{\omega _0}} oh00limnω0 is defined by this limit. Consider it defined in the finite interval [ − T / 2 , > T / 2 ] \left[ { - T/2,\;T/2} \right] [T/2,T/2] 的函数 f ( t ) f\left( t \right) f(t),对其以 T T < /span>T Extend the period to obtain the periodic function f ~ ( t ) \tilde f\left( t \right) f~(t),那么可得 f ( t ) f\left( t \right) f(t) 的傅利变换谱 F ( j ω ) F\left( {j\omega } \right) F() f ~ ( t ) \tilde f\left( t \right) f~(t) 的傅りコ级数组 F ~ [ n ] \tilde F\left[ n \right] F~[n] Division

F ( j ω ) = ∫ − T / 2 T / 2 f ( t ) e − j ω t d t , F ~ [ n ] = 1 T ∫ − T / 2 T / 2 f ~ ( t ) e − j n Ω T t d t = 1 T F ( j ω ) ∣ ω = n Ω T , w h e r e    Ω T = 2 π / T . (2.3) \begin{gathered} F\left( {j\omega } \right) = \int\limits_{ - T/2}^{T/2} {f\left( t \right){e^{ - j\omega t}}dt} , \\ \tilde F\left[ n \right] = \frac{1}{T}\int\limits_{ - T/2}^{T/2} {\tilde f\left( t \right){e^{ - jn{\Omega _T}t}}dt} = \frac{1}{T}{\left. {F\left( {j\omega } \right)} \right|_{\omega = n{\Omega _T}}}, \\ where\;{\Omega _T} = 2\pi /T. \\ \end{gathered} \tag{2.3} F()=T/2T/2f(t)It istdt,F~[n]=T1T/2T/2f~(t)It isjnΩTtdt=T1F()ω=nΩT,whereOhT=2π/T.(2.3)

In other words, the Fourier coefficient of the periodic function F ~ [ n ] \tilde F\left[ n \right] F~[n] is obtained by Fourier transforming the periodic function within one period F ( j ω ) F\left( {j\omega } \right) F() Ω T {\Omega _T} OhT is evenly spaced sampling and T T T The result of amplitude scaling. This involves the concept of sampling, which leads to the discrete-time Fourier transform we are talking about below. We will also see that the properties of the time domain and the frequency domain are always mirror symmetries.

3 Discrete time Fourier transform

Before discussing sampling and discrete-time Fourier transform, we need to introduce the Dirac function, which is usually defined based on the limit, that is

δ ( t ) = lim ⁡ ε → 0 { 1 / ε , t ∈ ( − ε / 2 , ε / 2 ) 0 , others ( 3.1 ) \ delta \ left ( t \ right ) = \ mathop { \ lim }\ limits_{\itempsilon \to 0} \left\{ {\begin{array}{c} {1/\itempsilon ,}&{t \in \left( { - \itempsilon/2,\itemepsilon/2}\ right)} \\{0,}&{others}\end{array}}\right.\tag{3.1}d(t)=ε0lim{ 1/ε,0,t(ε/2,ε/2)others(3.1)

Note that the definition of Dirac function is not unique. The above uses a relatively simple definition of rectangular function. Other definitions such as triangular function can also be used, etc. It only occurs when t → 0 t \to 0 t0 has infinite values ​​and is 0 elsewhere, so the Dirac function is also called the impulse function and has

∫ − ∞ ∞ δ ( t ) d t = lim ⁡ ε → 0 ∫ − ε / 2 ε / 2 1 ε d t = 1. (3.2) \int\limits_{ - \infty }^\infty {\delta \left(; t \right)dt} = \mathop {\lim }\limits_{\itempsilon \to 0} \int\limits_{ - \itempsilon /2}^{\itempsilon /2} {\frac{1}{\itempsilon}; dt} = 1.\tag{3.2}d(t)dt=ε0limε/2ε/2e1dt=1.(3.2)

Hypothetical function f ( t ) f\left( t \right) f(t) 连续,因为 lim ⁡ t → t 0 f ( t ) = f ( t 0 ) \mathop {\lim }\limits_{t \to {t_0}} f\left( t \right) = f\left( { {t_0}} \right) tt0limf(t)=f(t0), it is easy to derive the following properties

∫ − ∞ ∞ f ( t ) δ ( t − t 0 ) d t = lim ⁡ ε → 0 ∫ t 0 − ε / 2 t 0 + ε / 2 f ( t ) 1 ε d t = f ( t 0 ) lim ⁡ ε → 0 ∫ t 0 − ε / 2 t 0 + ε / 2 1 ε d t = f ( t 0 ) = ∫ − ∞ ∞ f ( t 0 ) δ ( t − t 0 ) d t . (3.3) \begin{aligned} \int\limits_{ - \infty }^\infty {f\left( t \right)\delta \left( {t - {t_0}} \right)dt} &= \mathop {\lim }\limits_{\varepsilon \to 0} \int\limits_{ {t_0} - \varepsilon /2}^{ {t_0} + \varepsilon /2} {f\left( t \right)\frac{1}{\varepsilon }dt} \\ &= f\left( { {t_0}} \right)\mathop {\lim }\limits_{\varepsilon \to 0} \int\limits_{ {t_0} - \varepsilon /2}^{ {t_0} + \varepsilon /2} {\frac{1}{\varepsilon }dt} = f\left( { {t_0}} \right) \\ &= \int\limits_{ - \infty }^\infty {f\left( { {t_0}} \right)\delta \left( {t - {t_0}} \right)dt} . \\ \end{aligned} \tag{3.3} f(t)d(tt0)dt=ε0limt0ε/2t0+ε/2f(t)e1dt=f(t0)ε0limt0ε/2t0+ε/2e1dt=f(t0)=f(t0)d(tt0)dt.(3.3)

This property is also called the sampling property of the Dirac function. In addition, the convolution property of the Dirac function is also very commonly used, namely

f ( t ) ∗ δ ( t − t 0 ) = ∫ − ∞ ∞ f ( τ ) δ ( t − t 0 − τ ) d τ = lim ⁡ ε → 0 ∫ t − t 0 − ε / 2 t − t 0 + ε / 2 f ( τ ) 1 ε d τ = f ( t − t 0 ) lim ⁡ ε → 0 ∫ t − t 0 − ε / 2 t − t 0 + ε / 2 1 ε d τ = f ( t − t 0 ) . (3.4) \begin{aligned} f\left( t \right) * \delta \left( {t - {t_0}} \right) &= \int\limits_{ - \infty }^\infty {f\left( \tau \right)\delta \left( {t - {t_0} - \tau } \right)d\tau } \\ &= \mathop {\lim }\limits_{\varepsilon \to 0} \int\limits_{t - {t_0} - \varepsilon /2}^{t - {t_0} + \varepsilon /2} {f\left( \tau \right)\frac{1}{\varepsilon }d\tau } \\ &= f\left( {t - {t_0}} \right)\mathop {\lim }\limits_{\varepsilon \to 0} \int\limits_{t - {t_0} - \varepsilon /2}^{t - {t_0} + \varepsilon /2} {\frac{1}{\varepsilon }d\tau } \\ &= f\left( {t - {t_0}} \right). \\ \end{aligned} \tag{3.4} f(t)d(tt0)=f(τ)d(tt0τ)dτ=ε0limtt0ε/2tt0+ε/2f(τ)e1dτ=f(tt0)ε0limtt0ε/2tt0+ε/2e1dτ=f(tt0).(3.4)

In other words, the Dirac function can make the time axis t t The origin of t moves according to the position where the impulse is generated, so that the time shift of the function can be expressed in the form of convolution.

The Dirac function provides an analysis method from continuous time signals to discrete time signals. Realistic sampling usually involves a sampling period T T T and sampling time ε \varepsilon ε Two concepts. The sampling period is the time distance between two adjacent discrete sampling points. Generally, we only discuss equally spaced sampling. The sampling time is mainly limited by the sampling technology. Existing technology usually cannot measure a relatively accurate value of the signal in an instant. For example, when measuring voltage, it is usually necessary to charge the capacitor, and charging takes a certain amount of time. This process can be expressed as an integral, that is:

f ˉ ( n T ) = 1 ε ∫ n T − ε / 2 n T + ε / 2 f ( t ) d t . (3.5) \bar f\left( {nT} \right) = \frac{1}{\varepsilon }\int\limits_{nT - \varepsilon /2}^{nT + \varepsilon /2} {f\left( t \right)dt} .\tag{3.5} fˉ(nT)=e1nTε/2nT+ε/2f(t)dt.(3.5)

It can be found that the Dirac function is equivalent to an ideal instantaneous sampling process. Using the Dirac function can ignore the concept of sampling time, thereby eliminating many unnecessary operations in signal analysis.

Then, suppose there is a continuous time signal f a ( t ) {f_a}\left( t \right) fa(t),以 T T T 为采样周期,对 f a ( t ) {f_a}\left( t \right) fa(t) t = n T t = nT t=nT is uniformly sampled, and a discrete sequence can be obtained f [ n ] f\left[ n \right] f[n], inside

f [ n ] = f a ( n T ) , − ∞ < n < ∞ (3.6) f\left[ n \right] = {f_a}\left( {nT} \right),\quad - \infty < n < \infty \tag{3.6} f[n]=fa(nT),<n<(3.6)

The sampling process can be expressed as a weighted superposition of periodic Dirac functions, thereby obtaining a continuous time signal f p ( t ) {f_p}\left( t \right) fp(t),即

f p ( t ) = ∑ n = − ∞ ∞ f a ( n T ) δ ( t − n T ) . (3.7) {f_p}\left( t \right) = \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right)\delta \left( {t - nT} \right)} .\tag{3.7} fp(t)=n=fa(nT)d(tnT).(3.7)

当然, f p ( t ) {f_p}\left( t \right) fp(t) 也等价于 f a ( t ) {f_a}\left( t \right) fa(t) 与周期冲激串 p ( t ) p\left( t \right) p(t) 的乘积,current

f p ( t ) = f a ( t ) p ( t ) , w h e r e    p ( t ) = ∑ n = − ∞ ∞ δ ( t − n T ) . (3.8) \begin{gathered} {f_p}\left( t \right) = {f_a}\left( t \right)p\left( t \right), \\ where\;p\left( t \right) = \sum\limits_{n = - \infty }^\infty {\delta \left( {t - nT} \right)} . \\ \end{gathered} \tag{3.8} fp(t)=fa(t)p(t),wherep(t)=n=d(tnT).(3.8)

Pay attention to the difference between continuous time signals and continuous signals. Continuous time only refers to independent variables t t t is continuous, and it does not mean that the signal itself is continuous. In addition, since f p ( t ) {f_p}\left( t \right) fp(t) is represented by the weighted superposition of Dirac functions, which only It only makes sense under interval integrals, for example

∫ n T − τ n T + τ f p ( t ) d t = f a ( n T ) = f [ n ] ,    τ < T / 2. (3.9) \int\limits_{nT - \tau }^{nT + \tau } { {f_p}\left( t \right)dt} = {f_a}\left( {nT} \right) = f[n],\;\tau < T/2.\tag{3.9} nTτnT+τfp(t)dt=fa(nT)=f[n],t<T/2.(3.9)

Then, it can be deduced that f p ( t ) {f_p}\left( t \right) fp(t) to change the location

F p ( j ω ) = ∫ − ∞ ∞ f p ( t ) e − j ω t d t = ∫ − ∞ ∞ ( ∑ n = − ∞ ∞ f a ( n T ) δ ( t − n T ) ) e − j ω t d t = ∑ n = − ∞ ∞ f a ( n T ) ∫ − ∞ ∞ δ ( t − n T ) e − j ω t d t = ∑ n = − ∞ ∞ f a ( n T ) ∫ − ∞ ∞ δ ( t − n T ) e − j ω ( t − n T ) − j ω n T d ( t − n T ) = ∑ n = − ∞ ∞ f a ( n T ) e − j ω n T . (3.10) \begin{aligned} {F_p}\left( {j\omega } \right) &= \int\limits_{ - \infty }^\infty { {f_p}\left( t \right){e^{ - j\omega t}}dt} \\ &= \int\limits_{ - \infty }^\infty {\left( {\sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right)\delta \left( {t - nT} \right)} } \right){e^{ - j\omega t}}dt} \\ &= \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right)\int\limits_{ - \infty }^\infty {\delta \left( {t - nT} \right){e^{ - j\omega t}}dt} } \\ &= \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right)\int\limits_{ - \infty }^\infty {\delta \left( {t - nT} \right){e^{ - j\omega \left( {t - nT} \right) - j\omega nT}}d\left( {t - nT} \right)} } \\ &= \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right){e^{ - j\omega nT}}} . \\ \end{aligned} \tag{3.10} Fp()=fp(t)It istdt=(n=fa(nT)d(tnT))It istdt=n=fa(nT)d(tnT)It istdt=n=fa(nT)d(tnT)It is(tnT)jωnTd(tnT)=n=fa(nT)It isjωnT.(3.10)

Because we are more concerned about the signal itself, when the continuous-time signal is sampled to obtain the discrete-time signal, the sampling period can be ignored T T T, thereby simplifying subsequent operations. In order to distinguish it from the Fourier transform of general continuous-time signals, we use Ω \Omega Ω Alternative expression (3.10) Neutral ω \omega ω,Immediate

F p ( j Ω ) = ∑ n = − ∞ ∞ f a ( n T ) e − j Ω n T . (3.11) {F_p}\left( {j\Omega } \right) = \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right){e^{ - j\Omega nT}}} .\tag{3.11} Fp(jΩ)=n=fa(nT)It isjΩnT.(3.11)

Then the sequence can be defined f [ n ] f\left[ n \right] fThe Discrete Time FT (DTFT) of [n] is

F ( e j ω ) = ∑ n = − ∞ ∞ f [ n ] e − j ω n ,    w h e r e    ω = Ω T . (3.12) F\left( { {e^{j\omega }}} \right) = \sum\limits_{n = - \infty }^\infty {f\left[ n \right]{e^{ - j\omega n}}} ,\;where\;\omega = \Omega T.\tag{3.12} F(e)=n=f[n]It isjωn,whereoh=ΩT.(3.12)

and have

ω = 2 π ⇔ Ω = ω T = 2 π T = Ω T . (3.13) \omega = 2\pi \Leftrightarrow \Omega = \frac{\omega }{T} = \frac{ {2\pi }}{T} = {\Omega _T}.\tag{3.13} oh=2πOh=Tω=T2π=OhT.(3.13)

This way we have a method to analyze discrete-time signals, which is especially important for digital circuits that can only process discrete data. However, although we intentionally ignore the sampling period T T in equation (3.12)THowever, this does not mean that it does not require further discussion. Because sampling is a conversion process from continuous time to discrete time, intuitively this will lead to the loss of some information, so how to prove and measure this information distortion is the focus of our next discussion.

It can be found that, unlike the Fourier transform of general continuous-time signals, the continuous-time signal defined by the weighted superposition of periodic Dirac functions f p ( t ) {f_p}\ left( t \right) fp(t) 的傅里叶变换 F p ( j Ω ) {F_p}\left( {j\Omega } \right) Fp(jΩ),以及序列 f [ n ] f\left[ n \right] f[n] Dispersal time change F ( e j ω ) F\left( { {e^{j\omega }}} \right) F(e) are all clearly periodic, that is

F p ( j Ω ) = ∑ n = − ∞ ∞ f a ( n T ) e − j Ω n T = ∑ n = − ∞ ∞ f a ( n T ) e − j Ω n 2 π Ω T = ∑ n = − ∞ ∞ f a ( n T ) e − j ( Ω + k Ω T ) n 2 π Ω T = F p ( j ( Ω + k Ω T ) ) , F ( e j ω ) = ∑ n = − ∞ ∞ f [ n ] e − j ω n = ∑ n = − ∞ ∞ f [ n ] e − j ( ω + 2 k π ) n = F ( e j ( ω + 2 k π ) ) = F ( e j ( ω + k Ω T T ) ) , w h e r e    ω = Ω T ,    Ω T = 2 π / T . (3.14) \begin{aligned} {F_p}\left( {j\Omega } \right) &= \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right){e^{ - j\Omega nT}}} = \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right){e^{ - j\Omega n\tfrac{ {2\pi }}{ { {\Omega _T}}}}}} \\ &= \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right){e^{ - j\left( {\Omega + k{\Omega _T}} \right)n\tfrac{ {2\pi }}{ { {\Omega _T}}}}}} = {F_p}\left( {j\left( {\Omega + k{\Omega _T}} \right)} \right), \\ F\left( { {e^{j\omega }}} \right) &= \sum\limits_{n = - \infty }^\infty {f\left[ n \right]{e^{ - j\omega n}}} = \sum\limits_{n = - \infty }^\infty {f\left[ n \right]{e^{ - j\left( {\omega + 2k\pi } \right)n}}} \\ &= F\left( { {e^{j\left( {\omega + 2k\pi } \right)}}} \right) = F\left( { {e^{j\left( {\omega + k{\Omega _T}T} \right)}}} \right), \\ where\;\omega &= \Omega T,\;{\Omega _T} = 2\pi /T. \\ \end{aligned} \tag{3.14} Fp(jΩ)F(e)whereω=n=fa(nT)It isjΩnT=n=fa(nT)It isjΩnOhT2π=n=fa(nT)It isj(Ω+kΩT)nOhT2π=Fp(j(Ω+kΩT)),=n=f[n]It isjωn=n=f[n]It isj(ω+2)n=F(ej(ω+2))=F(ej(ω+kΩTT)),=ΩT,OhT=2π/T.(3.14)

F p ( j Ω ) {F_p}\left( {j\Omega } \right) Fp(jΩ) This is the ratio < /span> Ω T {\Omega _T} OhT is a function of period, F ( e j ω ) F\left( { {e^{j\omega }}} \right) F(e) 2 π 2\pi 2π is the period. This periodicity is caused by the periodic impulse train used in the sampling process p ( t ) p\left( t \right) pIntroduced by (t). In addition, although we pass F p ( j Ω ) {F_p}\left( {j\Omega } \right) Fp(jΩ) F ( e j ω ) F\left( { {e^{j\omega }}} \right) F(e) defines the form of discrete-time Fourier transform, but does not compare it with the Fourier transform of general continuous-time signals. Transformation F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) Establish a connection. Since the continuous time function f a ( t ) {f_a}\left( t \right) fa(t) の傅りば变卢 F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) Body submersion periodicity , immediately F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) possible complete number Ω ∈ ( − ∞ , + ∞ ) \Omega \in \left( { - \infty , + \infty } \right) Oh(,+) extends non-periodically, then if F p ( j Ω ) {F_p}\left( {j\Omega } \right) Fp(jΩ) 是由 F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) 推导而来的, F p ( j Ω ) {F_p}\left( {j\Omega } \right) Fp(jΩ) periodicity is impossible Guide to refuge F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) .

In order to prove this information distortion, we need to introduce the Poisson summation formula, that is, for a non-periodic continuous time function ϕ ( t ) \phi \left( t \right ) ϕ(t),有

∑ n = − ∞ ∞ ϕ ( t + n T ) = 1 T ∑ k = − ∞ ∞ Φ ( j k Ω T ) e j k Ω T t , w h e r e    Ω T = 2 π / T . (3.15) \begin{gathered} \sum\limits_{n = - \infty }^\infty {\phi \left( {t + nT} \right)} = \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\Phi \left( {jk{\Omega _T}} \right){e^{jk{\Omega _T}t}}} , \\ where\;{\Omega _T} = 2\pi /T. \\ \end{gathered} \tag{3.15} n=ϕ(t+nT)=T1k=Phi(jkΩT)It isjkΩTt,whereOhT=2π/T.(3.15)

其中 Φ ( j Ω ) \Phi \left( {j\Omega } \right) Phi(jΩ) ϕ ( t ) \phi \left( t \right) ϕContinuous-time Fourier transform of (t), T T T is any non-zero length. To prove this, we need to comprehensively use the knowledge of the Fourier series of periodic functions and the Fourier transform of continuous time functions we mentioned earlier, as well as the properties of the Dirac function, that is

∑ n = − ∞ ∞ ϕ ( t + n T ) = ∑ n = − ∞ ∞ ϕ ( t ) ∗ δ ( t + n T ) = ϕ ( t ) ∗ ∑ n = − ∞ ∞ δ ( t + n T ) = ϕ ( t ) ∗ [ ∑ k = − ∞ − ∞ ( 1 T ∫ − T / 2 T / 2 δ ( τ ) e − j k Ω T τ d τ ) e j k Ω T t ] = ϕ ( t ) ∗ 1 T ∑ k = − ∞ ∞ e j k Ω T t = 1 T ∑ k = − ∞ ∞ ϕ ( t ) ∗ e j k Ω T t = 1 T ∑ k = − ∞ ∞ ( ∫ − ∞ ∞ ϕ ( τ ) e j k Ω T ( t − τ ) d τ ) = 1 T ∑ k = − ∞ ∞ ( ∫ − ∞ ∞ ϕ ( τ ) e − j k Ω T τ d τ ) e j k Ω T t = 1 T ∑ k = − ∞ ∞ Φ ( j k Ω T ) e j k Ω T t . (3.16) \begin{aligned} \sum\limits_{n = - \infty }^\infty {\phi \left( {t + nT} \right)} &= \sum\limits_{n = - \infty }^\infty {\phi \left( t \right) * \delta \left( {t + nT} \right)} \\ &= \phi \left( t \right) * \sum\limits_{n = - \infty }^\infty {\delta \left( {t + nT} \right)} \\ &= \phi \left( t \right) * \left[ {\sum\limits_{k = - \infty }^{ - \infty } {\left( {\frac{1}{T}\int\limits_{ - T/2}^{T/2} {\delta \left( \tau \right){e^{ - jk{\Omega _T}\tau }}d\tau } } \right){e^{jk{\Omega _T}t}}} } \right] \\ &= \phi \left( t \right) * \frac{1}{T}\sum\limits_{k = - \infty }^\infty { {e^{jk{\Omega _T}t}}} \\ &= \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\phi \left( t \right) * {e^{jk{\Omega _T}t}}} \\ &= \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\left( {\int\limits_{ - \infty }^\infty {\phi \left( \tau \right){e^{jk{\Omega _T}\left( {t - \tau } \right)}}d\tau } } \right)} \\ &= \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\left( {\int\limits_{ - \infty }^\infty {\phi \left( \tau \right){e^{ - jk{\Omega _T}\tau }}d\tau } } \right){e^{jk{\Omega _T}t}}} \\ &= \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\Phi \left( {jk{\Omega _T}} \right){e^{jk{\Omega _T}t}}} . \\ \end{aligned} \tag{3.16} n=ϕ(t+nT)=n=ϕ(t)d(t+nT)=ϕ(t)n=d(t+nT)=ϕ(t) k= T1T/2T/2d(τ)It isjkΩTτdτ It isjkΩTt =ϕ(t)T1k=It isjkΩTt=T1k=ϕ(t)It isjkΩTt=T1k= ϕ(τ)It isjkΩT(tτ)dτ =T1k= ϕ(τ)It isjkΩTτdτ It isjkΩTt=T1k=Phi(jkΩT)It isjkΩTt.(3.16)

t = 0 t = 0 t=0 time, existence

∑ n = − ∞ ∞ ϕ ( n T ) = 1 T ∑ k = − ∞ ∞ Φ ( j k Ω T ) . (3.17) \sum\limits_{n = - \infty }^\infty {\phi \left( {nT} \right)} = \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\Phi \left( {jk{\Omega _T}} \right)} .\tag{3.17} n=ϕ(nT)=T1k=Phi(jkΩT).(3.17)

According to the CTFT frequency shift properties, that is

1 2 π ∫ − ∞ ∞ Φ ( Ω + Ψ ) e j Ω t d Ω = 1 2 π ∫ − ∞ ∞ Φ ( Ω + Ψ ) e j ( Ω + Ψ ) t − j Ψ t d ( Ω + Ψ ) = e − j Ψ t 1 2 π ∫ − ∞ ∞ Φ ( Ω ) e j Ω t d Ω = ϕ ( t ) e − j Ψ t . (3.18) \begin{aligned} &\frac{1}{ {2\pi }}\int\limits_{ - \infty }^\infty {\Phi \left( {\Omega + \Psi } \right){e^{j\Omega t}}d\Omega } \\ &= \frac{1}{ {2\pi }}\int\limits_{ - \infty }^\infty {\Phi \left( {\Omega + \Psi } \right){e^{j\left( {\Omega + \Psi } \right)t - j\Psi t}}d\left( {\Omega + \Psi } \right)} \\ &= {e^{ - j\Psi t}}\frac{1}{ {2\pi }}\int\limits_{ - \infty }^\infty {\Phi \left( \Omega \right){e^{j\Omega t}}d\Omega } \\ &= \phi \left( t \right){e^{ - j\Psi t}}. \\ \end{aligned} \tag{3.18} 2π1Phi(Ω+Ψ)It isjΩtdΩ=2π1Phi(Ω+Ψ)It isj(Ω+Ψ)tjΨtd(Ω+Ψ)=It isjΨt2π1Phi(Ω)It isjΩtdΩ=ϕ(t)It isjΨt.(3.18)

So there is

∑ n = − ∞ ∞ ϕ ( n T ) e − j Ψ n T = 1 T ∑ k = − ∞ ∞ Φ ( j ( k Ω T + Ψ ) ) . (3.19) \sum\limits_{n = - \infty }^\infty {\phi \left( {nT} \right){e^{ - j\Psi nT}}} = \frac{1}{T}\sum\limits_{k = - \infty }^\infty {\Phi \left( {j\left( {k{\Omega _T} + \Psi } \right)} \right)} .\tag{3.19} n=ϕ(nT)It isjΨnT=T1k=Phi(j(kΩT+Ψ)).(3.19)

f a ( t ) {f_a}\left( t \right) fa(t) 替代 ϕ ( t ) \phi \left( t \right) ϕ(t) k Ω T k{\Omega _T} kΩT replace Ψ \Psi Ψ,即有

∑ n = − ∞ ∞ f a ( n T ) e − j Ω n T = F p ( j Ω ) = 1 T ∑ k = − ∞ ∞ F a ( j ( Ω + k Ω T ) ) . (3.20) \sum\limits_{n = - \infty }^\infty { {f_a}\left( {nT} \right){e^{ - j\Omega nT}}} = {F_p}\left( {j\Omega } \right) = \frac{1}{T}\sum\limits_{k = - \infty }^\infty { {F_a}\left( {j\left( {\Omega + k{\Omega _T}} \right)} \right)} .\tag{3.20} n=fa(nT)It isjΩnT=Fp(jΩ)=T1k=Fa(j(Ω+kΩT)).(3.20)

Therefore, it can be seen that the function f p ( t ) {f_p}\left( t \right) fpThe continuous time Fourier transform of (t) is f a ( t ) {f_a}\left( t \right) faThe continuous-time Fourier transform of (t) is taken at the sampling frequency Ω T {\Omega _T} OhT is the result of period translation and amplitude scaling. Then it is predictable that if F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) ∣ Ω ∣ > Ω T / 2 \left| \Omega \right| > {\Omega _T}/2 Ω>OhTWhen /2 has a non-zero value, it is very likely that F a ( j ( Ω + k Ω T ) ) { F_a}\left( {j\left( {\Omega + k{\Omega _T}} \right)} \right) Fa(j(Ω+kΩT)) overlap, and the spectrum of the overlapping part will no longer be separated by filtering, that is, we cannot separate it from F p ( j Ω ) {F_p}\left( {j\Omega } \right) Fp(jΩ) 完整地恢复 F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ),But the creation information is missing . However, the result is F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) 只在 ∣ Ω ∣ < Ω T / 2 \left| \Omega \right| < {\Omega _T}/2 Ω<OhTIf there is a non-zero value in /2, it will not match F a ( j ( Ω + k Ω T ) ) {F_a} \left( {j\left( {\Omega + k{\Omega _T}} \right)} \right) Fa(j(Ω+kΩT)) There is an overlapping part. We only know F p ( j Ω ) {F_p }\left( {j\Omega } \right) FpIn the case of (jΩ), we It can be obtained by an ideal low-pass filter F p ( j Ω ) {F_p}\left( {j\Omega } \right) Fp(jΩ) Ω ∈ ( Ω T / 2 , Ω T / 2 ) \Omega \in \left( { {\Omega _T}/2,{\Omega _T}/2} \right) Oh(ΩT/2,OhT/2) F a ( j Ω ) {F_a}\ left( {j\Omega } \right) Fa(jΩ), due to Fourier The transformation is reversible, which means that we pass the discrete sequence f [ n ] f\left[ n \right] f[n] Recover continuous-time signals without distortion f a ( t ) {f_a}\left( t \right) fa(t)。因为序列 f [ n ] f\left[ n \right] f[n] Dispersal time change F ( e j ω ) F\left( { {e^{j\omega }}} \right) F(e) 只是 F p ( j Ω ) {F_p}\left( {j\Omega } \right) Fp(jΩ) Ω T {\Omega _T} OhT 缩波到 2 π 2\pi The result of 2π only needs to refer to the above inference for its properties.

Thus it can be found that although it is intuitive for continuous time signals f a ( t ) {f_a}\left( t \right) fa(t) Perform sampling to obtain a discrete sequence f [ n ] f\left[ n \right] fThere will be information distortion in the process of [n], but this situation is not absolute. , which depends on the effective spectral range of the continuous-time signal and the sampling frequency used. Suppose ∣ Ω ∣ > Ω m \left| \Omega \right| > {\Omega _m} Ω>Ohm 时,有 F a ( j Ω ) = 0 {F_a}\left( {j\Omega } \right) = 0 Fa(jΩ)=0, then the sampling frequency Ω T {\Omega _T} OhTAs long as it satisfies

Ω m ⩽ Ω T / 2 ⇔ Ω T ⩾ 2 Ω m . (3.21) {\Omega _m} \leqslant {\Omega _T}/2 \Leftrightarrow {\Omega _T} \geqslant 2{\Omega _m}. \tag{3.21} OhmOhT/2OhT2Ωm.(3.21)

can achieve the sequence f [ n ] f\left[ n \right] f[n] f a ( t ) {f_a}\left( t \right) faDistortion-free recovery of (t). This conclusion is the sampling theorem of band-limited signals. Equation (3.21) is also called the Nyquist condition, 2 Ω m 2{\Omega _m} 2Ωm is called the Nyquist rate, which determines complete recovery from the sampled form f a ( t ) {f_a}\left( t \right) faThe minimum sampling frequency of (t). But it should be noted that F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) ∣ Ω ∣ = Ω m \left| \Omega \right| = {\Omega _m} Ω=OhmThe impulse function (that is, the Dirac function) cannot be contained at because the impulse function is defined by the limit form, which means that Ω → Ω m + {\Omega \to \Omega _m^ + } OhOhm+ F a ( j Ω ) {F_a}\left( {j\Omega } \right) Fa(jΩ) 并为 0、 2 Ω m 2{\Omega _m} 2Ωm can be restored f a ( t ) {f_a}\left( t \right) fa(t). As an example Ω T = 2 Ω m {\Omega _T} = 2{\Omega _m} OhT=2Ωm f a ( t ) = sin ⁡ ( Ω m t ) {f_a}\left( t \right) = \sin \left( { {\Omega _m}t} \right) fa(t)=sin(Ωmt) When sampling, there are

f [ n ] = f a ( 2 π n Ω T ) = sin ⁡ ( π n ) = 0. f\left[ n \right] = {f_a}\left( {\frac{ {2\pi n}}{ { {\Omega _T}}}} \right) = \sin \left( {\pi n} \right) = 0. f[n]=fa(OhT2πn)=sin(πn)=0.

This is obviously impossible from f [ n ] f\left[ n \right] f[n] 恢复 f a ( t ) {f_a}\left( t \right) fa(t) 的。

In summary, we analyzed the continuous-time signal f a ( t ) {f_a}\left( t \right) fa(t) Obtain discrete sequence through uniform sampling f [ n ] f\left[ n \right] fThe process of [n] as well as the continuous time Fourier transform and the discrete time Fourier transform The inner connection of transformation. After this, we mainly focus on the discrete sequence f [ n ] f\left[ n \right] f[n] itself, without considering the problems caused by sampling frequency . As mentioned earlier, for the discrete sequence f [ n ] f\left[ n \right] f[n], assuming it is absolutely summable, define its discrete time Fourier transform for

F ( e j ω ) = ∑ n = − ∞ ∞ f [ n ] e − j ω n . (3.22) F\left( { {e^{j\omega }}} \right) = \sum\limits_{n = - \infty }^\infty {f\left[ n \right]{e^{ - j\omega n}}} .\tag{3.22} F(e)=n=f[n]It isjωn.(3.22)

In order to derive its inverse transformation form, because F ( e j ω ) F\left( { {e^{j\omega }}} \right) F(e) is here 2 π 2\pi 2π is periodic, so we might as well imitate the continuous-time inverse Fourier transform form, but only when ( − π , π ) \left( { - \pi ,\pi } \right) (π,By integrating on π), we can get

1 2 π ∫ − π π F ( and j ω ) and j ω and ω = 1 2 π ∫ − π π ( ∑ m = − ∞ ∞ f [ m ] and − j ω m ) and j ω and ω = ∑ m = − ∞ ∞ f [ m ] ( 1 2 π ∫ − π π e − j ω ( n − m ) d ω ) (3.23) \begin{aligned} &\frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi {F\left( { {e^{j\omega }}} \right){e^{j\omega n}}d\omega } \\ = &\frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi {\left( {\sum\limits_{m = - \infty }^\infty {f\left [ m \right]{e^{ - j\omega m}}} ​​} \right){e^{j\omega n}}d\omega } \\ = &\sum\limits_{m = - \infty }^\infty {f\left[ m \right]\left( {\frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi { {e^{ - j\mega \left( {n - m} \right)}}d\mega } } \right)} \\ \end{aligned} \tag{3.23} ==2π1ππF(e)It isjωndω2π1ππ(m=f[m]It isjωm)It isjωndωm=f[m] 2π1ππIt is(nm)dω .(3.23)

n = m n = m n=m, obviously

1 2 π ∫ − π π e − j ω 0 d ω = 1. (3.24) \frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi { {e^{ - j\omega 0}}d\omega } = 1.\tag{3.24} 2π1ππIt is0dω=1.(3.24)

n ≠ m n \ne m n=m time, existence

1 2 π ∫ − π π e − j ω ( n − m ) d ω = 1 2 π ∫ − π π cos ⁡ ( ω ( n − m ) ) − j sin ⁡ ( ω ( n − m ) ) d ω = 1 2 π ( n − m ) [ sin ⁡ ( ω ( n − m ) ) + j cos ⁡ ( ω ( n − m ) ) ] ∣ − π π = 0. (3.25) \begin{aligned} &\frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi { {e^{ - j\omega \left( {n - m} \right)}}d\omega } \\ = &\frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi {\cos \left( {\omega \left( {n - m} \right)} \right) - j\sin \left( {\omega \left( {n - m} \right)} \right)d\omega } \\ = &\frac{1}{ {2\pi \left( {n - m} \right)}}\left. {\left[ {\sin \left( {\omega \left( {n - m} \right)} \right) + j\cos \left( {\omega \left( {n - m} \right)} \right)} \right]} \right|_{ - \pi }^\pi \\ = &0. \\ \end{aligned} \tag{3.25} ===2π1ππIt is(nm)dω2π1ππcos(ω(nm))jsin(ω(nm))dω2π(nm)1[sin(ω(nm))+jcos(ω(nm))]ππ0.(3.25)

So there is

f [ n ] = 1 2 π ∫ − π π F ( e j ω ) e j ω n d ω . ((3.26) f\left[ n \right] = \frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi {F\left( { {e^{j\omega }}} \right){e^{j\omega n}}d\omega } .\tag{(3.26} f[n]=2π1ππF(e)It isjωndω.((3.26)

This can be summarized as the sequence f [ n ] f\left[ n \right] fThe discrete time Fourier transform of [n] is

F ( e j ω ) = F { f [ n ] } = ∑ n = − ∞ ∞ f [ n ] e − j ω n . f [ n ] = F − 1 { F ( e j ω ) } = 1 2 π ∫ − π π F ( e j ω ) e j ω n d ω . (3.27) \begin{gathered} F\left( { {e^{j\omega }}} \right) = \mathcal{F}\left\{ {f\left[ n \right]} \right\} = \sum\limits_{n = - \infty }^\infty {f\left[ n \right]{e^{ - j\omega n}}} . \\ f\left[ n \right] = {\mathcal{F}^{ - 1}}\left\{ {F\left( { {e^{j\omega }}} \right)} \right\} = \frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi {F\left( { {e^{j\omega }}} \right){e^{j\omega n}}d\omega } . \\ \end{gathered} \tag{3.27} F(e)=F{ f[n]}=n=f[n]It isjωn.f[n]=F1{ F(e)}=2π1ππF(e)It isjωndω.(3.27)

Similar to the Dirac function defined in continuous time, we can also define an impulse sequence in discrete time

δ [ n ] = { 1 , n = 0 , 0 , n ≠ 0. (3.28) \delta \left[ n \right] = \left\{ {\begin{array}{c} {1,}&{n = 0,} \\ {0,}&{n \ne 0.} \end{array}} \right.\tag{3.28} d[n]={ 1,0,n=0,n=0.(3.28)

So there is

F { δ [ n − m ] } = ∑ n = − ∞ ∞ δ [ n − m ] e − j ω n = e − j ω m ∑ n = − ∞ ∞ δ [ n − m ] e − j ω ( n − m ) = e − j ω m . (3.29) \begin{gathered} \mathcal{F}\left\{ {\delta \left[ {n - m} \right]} \right\} = \sum\limits_{n = - \infty }^\infty {\delta \left[ {n - m} \right]{e^{ - j\omega n}}} \\ = {e^{ - j\omega m}}\sum\limits_{n = - \infty }^\infty {\delta \left[ {n - m} \right]{e^{ - j\omega \left( {n - m} \right)}}} = {e^{ - j\omega m}}. \\ \end{gathered} \tag{3.29} F{ δ[nm]}=n=d[nm]It isjωn=It isjωmn=d[nm]It is(nm)=It isjωm.(3.29)

It just corresponds to the equation (3.23)

1 2 π ∫ − π π F { δ [ n − m ] } and ω and ω = 1 2 π ∫ − π π and − j ω and ω and ω = 1 2 π ∫ − π π e − j ω ( n − m ) d ω = δ [ n − m (3.30) \begin{aligned} &\frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi {\mathcal{F}\left\{ {\delta \left[ {n - m} \right ]} \right\}{e^{j\mega n}}d\mega } \\ = &\frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi { {e^{ - j\omega m}}{e^{j\omega n}}d\omega } \\ = &\frac{1}{ {2\pi }}\int\limits_{ - \pi }^\pi { {e^{ - j\omega \left( {n - m} \right)}}d\omega } = \delta \left[ {n - m} \right] \\ \end{aligned} \tag{3.30} ==2π1ππF{ δ[nm]}It isjωndω2π1ππIt isjωmejωndω2π1ππIt is(nm)dω=d[nm].(3.30)

Therefore, the discrete impulse sequence δ [ n ] \delta \left[ n \right] d[n] is also very important in the analysis of discrete time signals, and its properties can be Provides considerable convenience when computing the discrete-time Fourier transform of a sequence.

Guess you like

Origin blog.csdn.net/qq_33552519/article/details/130255215