Significance Test

Reference link: Click Here

Significance Test is mainly divided into two categories:

  • Statistical Significance Test

    Measurement method: p-value < 0.05

    Purpose: To test whether there is a significant difference between the original distribution and the target distribution

  • Practical Significance Test

    Measurement method: effect size (cohen's d) (statistical effect)

    Purpose: To test how different the original distribution is from the target distribution"

NLPStatTest: A Toolkit for Comparing NLP System Performance "It is proposed that in addition to Statistical Significance in the NLP field, it is also necessary to do Practical Significance

2.2.3 Effect Size Estimation

In most experimental NLP papers employing significance testing, the p-value is the only quantity reported. However, the p-value is often misused and misinterpreted. For instance, statistical significance is easily conflated with practical significance; as a result, NLP researchers often run significance tests to show that the performances of two NLP systems are different (i.e., statistical significance), without measuring the degree or the importance of such a difference (i.e., practical significance).

Instructions for use:

Statistical Significance Test (statistical significance test):

python Statistical_significance.py file1 file2 0.05
import sys
import numpy as np
from scipy import stats


### Normality Check
# H0: data is normally distributed
def normality_check(data_A, data_B, name, alpha):

    if(name=="Shapiro-Wilk"):
        # Shapiro-Wilk: Perform the Shapiro-Wilk test for normality.
        shapiro_results = stats.shapiro([a - b for a, b in zip(data_A, data_B)])
        return shapiro_results[1]

    elif(name=="Anderson-Darling"):
        # Anderson-Darling: Anderson-Darling test for data coming from a particular distribution
        anderson_results = stats.anderson([a - b for a, b in zip(data_A, data_B)], 'norm')
        sig_level = 2
        if(float(alpha) <= 0.01):
            sig_level = 4
        elif(float(alpha)>0.01 and float(alpha)<=0.025):
            sig_level = 3
        elif(float(alpha)>0.025 and float(alpha)<=0.05):
            sig_level = 2
        elif(float(alpha)>0.05 and float(alpha)<=0.1):
            sig_level = 1
        else:
            sig_level = 0

        return anderson_results[1][sig_level]

    else:
        # Kolmogorov-Smirnov: Perform the Kolmogorov-Smirnov test for goodness of fit.
        ks_results = stats.kstest([a - b for a, b in zip(data_A, data_B)], 'norm')
        return ks_results[1]

## McNemar test
def calculateContingency(data_A, data_B, n):
    ABrr = 0
    ABrw = 0
    ABwr = 0
    ABww = 0
    for i in range(0,n):
        if(data_A[i]==1 and data_B[i]==1):
            ABrr = ABrr+1
        if (data_A[i] == 1 and data_B[i] == 0):
            ABrw = ABrw + 1
        if (data_A[i] == 0 and data_B[i] == 1):
            ABwr = ABwr + 1
        else:
            ABww = ABww + 1
    return np.array([[ABrr, ABrw], [ABwr, ABww]])

def mcNemar(table):
    statistic = float(np.abs(table[0][1]-table[1][0]))**2/(table[1][0]+table[0][1])
    pval = 1-stats.chi2.cdf(statistic,1)
    return pval


#Permutation-randomization
#Repeat R times: randomly flip each m_i(A),m_i(B) between A and B with probability 0.5, calculate delta(A,B).
# let r be the number of times that delta(A,B)<orig_delta(A,B)
# significance level: (r+1)/(R+1)
# Assume that larger value (metric) is better
def rand_permutation(data_A, data_B, n, R):
    delta_orig = float(sum([ x - y for x, y in zip(data_A, data_B)]))/n
    r = 0
    for x in range(0, R):
        temp_A = data_A
        temp_B = data_B
        samples = [np.random.randint(1, 3) for i in xrange(n)] #which samples to swap without repetitions
        swap_ind = [i for i, val in enumerate(samples) if val == 1]
        for ind in swap_ind:
            temp_B[ind], temp_A[ind] = temp_A[ind], temp_B[ind]
        delta = float(sum([ x - y for x, y in zip(temp_A, temp_B)]))/n
        if(delta<=delta_orig):
            r = r+1
    pval = float(r+1.0)/(R+1.0)
    return pval


#Bootstrap
#Repeat R times: randomly create new samples from the data with repetitions, calculate delta(A,B).
# let r be the number of times that delta(A,B)<2*orig_delta(A,B). significance level: r/R
# This implementation follows the description in Berg-Kirkpatrick et al. (2012),
# "An Empirical Investigation of Statistical Significance in NLP".
def Bootstrap(data_A, data_B, n, R):
    delta_orig = float(sum([x - y for x, y in zip(data_A, data_B)])) / n
    r = 0
    for x in range(0, R):
        temp_A = []
        temp_B = []
        samples = np.random.randint(0,n,n) #which samples to add to the subsample with repetitions
        for samp in samples:
            temp_A.append(data_A[samp])
            temp_B.append(data_B[samp])
        delta = float(sum([x - y for x, y in zip(temp_A, temp_B)])) / n
        if (delta > 2*delta_orig):
            r = r + 1
    pval = float(r)/(R)
    return pval


def main():
    if len(sys.argv) < 3:
        print("You did not give enough arguments\n ")
        sys.exit(1)
    filename_A = sys.argv[1]
    filename_B = sys.argv[2]
    alpha = sys.argv[3]


    with open(filename_A) as f:
        data_A = f.read().splitlines()

    with open(filename_B) as f:
        data_B = f.read().splitlines()

    data_A = list(map(float,data_A))
    data_B = list(map(float,data_B))

    print("\nPossible statistical tests: Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov, t-test, Wilcoxon, McNemar, Permutation, Bootstrap")
    name = input("\nEnter name of statistical test: ")

    ### Normality Check
    if(name=="Shapiro-Wilk" or name=="Anderson-Darling" or name=="Kolmogorov-Smirnov"):
        output = normality_check(data_A, data_B, name, alpha)

        if(float(output)>float(alpha)):
            answer = input("\nThe normal test is significant, would you like to perform a t-test for checking significance of difference between results? (Y\\N) ")
            if(answer=='Y'):
                # two sided t-test
                t_results = stats.ttest_rel(data_A, data_B)
                # correct for one sided test
                pval = t_results[1]/2
                if(float(pval)<=float(alpha)):
                    print("\nTest result is significant with p-value: {}".format(pval))
                    return
                else:
                    print("\nTest result is not significant with p-value: {}".format(pval))
                    return
            else:
                answer2 = input("\nWould you like to perform a different test (permutation or bootstrap)? If so enter name of test, otherwise type 'N' ")
                if(answer2=='N'):
                    print("\nbye-bye")
                    return
                else:
                    name = answer2
        else:
            answer = input("\nThe normal test is not significant, would you like to perform a non-parametric test for checking significance of difference between results? (Y\\N) ")
            if (answer == 'Y'):
                answer2 = input("\nWhich test (Permutation or Bootstrap)? ")
                name = answer2
            else:
                print("\nbye-bye")
                return

    ### Statistical tests

    # Paired Student's t-test: Calculate the T-test on TWO RELATED samples of scores, a and b. for one sided test we multiply p-value by half
    if(name=="t-test"):
        t_results = stats.ttest_rel(data_A, data_B)
        # correct for one sided test
        pval = float(t_results[1]) / 2
        if (float(pval) <= float(alpha)):
            print("\nTest result is significant with p-value: {}".format(pval))
            return
        else:
            print("\nTest result is not significant with p-value: {}".format(pval))
            return

    # Wilcoxon: Calculate the Wilcoxon signed-rank test.
    if(name=="Wilcoxon"):
        wilcoxon_results = stats.wilcoxon(data_A, data_B)
        if (float(wilcoxon_results[1]) <= float(alpha)):
            print("\nTest result is significant with p-value: {}".format(wilcoxon_results[1]))
            return
        else:
            print("\nTest result is not significant with p-value: {}".format(wilcoxon_results[1]))
            return

    if(name=="McNemar"):
        print("\nThis test requires the results to be binary : A[1, 0, 0, 1, ...], B[1, 0, 1, 1, ...] for success or failure on the i-th example.")
        f_obs = calculateContingency(data_A, data_B, len(data_A))
        mcnemar_results = mcNemar(f_obs)
        if (float(mcnemar_results) <= float(alpha)):
            print("\nTest result is significant with p-value: {}".format(mcnemar_results))
            return
        else:
            print("\nTest result is not significant with p-value: {}".format(mcnemar_results))
            return

    if(name=="Permutation"):
        R = max(10000, int(len(data_A) * (1 / float(alpha))))
        pval = rand_permutation(data_A, data_B, len(data_A), R)
        if (float(pval) <= float(alpha)):
            print("\nTest result is significant with p-value: {}".format(pval))
            return
        else:
            print("\nTest result is not significant with p-value: {}".format(pval))
            return


    if(name=="Bootstrap"):
        R = max(10000, int(len(data_A) * (1 / float(alpha))))
        pval = Bootstrap(data_A, data_B, len(data_A), R)
        if (float(pval) <= float(alpha)):
            print("\nTest result is significant with p-value: {}".format(pval))
            return
        else:
            print("\nTest result is not significant with p-value: {}".format(pval))
            return

    else:
        print("\nInvalid name of statistical test")
        sys.exit(1)




if __name__ == "__main__":
    main()

Practical Significance Test:

python Practical_significance.py file1 file2
import sys
import numpy as np
from numpy import mean, std, sqrt


def read_data_from_file(file_name):
    with open(file_name, 'r', encoding='utf-8') as reader:
        data_file = []
        try:
            lines = reader.readlines()
            data_file = [float(line.strip()) for line in lines]
        except:
            print('Data format error, please check')
        if len(data_file) == 0:
            print('Empty file, exit')
            sys.exit(0)
    return data_file


def two_side_data_reader(file1_name, file2_name):
    data_file1 = read_data_from_file(file1_name)
    data_file2 = read_data_from_file(file2_name)

    return data_file1, data_file2


def cal_cohen_d(data1, data2):
    def cohen_d(x, y):
        return (mean(x) - mean(y)) / sqrt((std(x) ** 2 + std(y) ** 2) / 2.0)
    mean1 = np.mean(data1)
    mean2 = np.mean(data2)
    # print(type(mean1))
    std1 = np.std(data1)
    std2 = np.std(data2)

    cohen = cohen_d(data1, data2)

    print('Data1 [mean:%.4f, std:%.4f]' % (mean1, std1))
    print('Data2 [mean:%.4f, std:%.4f]' % (mean2, std2))
    print("cohen's d value = %.4f" % (cohen))
    
    return cohen


if __name__ == '__main__':
    file_1 = sys.argv[1]
    file_2 = sys.argv[2]

    data1, data2 = two_side_data_reader(file_1, file_2)

    res = cal_cohen_d(data1, data2)

Guess you like

Origin blog.csdn.net/weixin_41862755/article/details/132526895