HCIP-IERS deploys enterprise-level routing and switching network_OSPF protocol features and configuration_OSPF adjacency and LSA

Table of contents

Chapter 1 OSPF Protocol Features and Configuration

Experiment 1-3 OSPF adjacency and LSA

learning purpose

Topology

Scenes

Learning tasks

Step 1. Basic configuration and IP addressing

Step 2. Configure multi-area OSPF

Step 3. Modify the router OSPF interface priority to affect DR election

Step 4. Configure to summarize direct routes and import them into the OSPF area

Step 5. View various types of LSA

Step 6. Observe LSR, LSU and LSAck

Additional Experiments: Think and Verify

final device configuration


 

Chapter 1 OSPF Protocol Features and Configuration

Experiment  1- 3 OSPF adjacency relationship and LSA

learning purpose

Understand the process of establishing neighbor relationship between four OSPF neighbor routers on Ethernet

Master the method of intervening in the election of OSPF DR

· Look at the content of the 5 types of LSAs, and what they do

Understand the mutual sending of OSPF LSR, LSU, LSAck data packets

Topology

 

Figure 1-3 OSPF adjacency relationship and LSA

Scenes

You are the company's network administrator. Now there are five AR G3 routers in the company's network, among which R1, R2, R3 and R4 are in the company's headquarters and interconnected through Ethernet. R5 is in the company branch, and R3 is connected to R3 in the company headquarters through a leased line. Due to the large scale of the network, in order to control the flooding of LSAs, you have designed multi-area OSPF interconnection.

The loopback0 interface of R1 belongs to area 2. Loopback0 interfaces of R2, R3, and R4 and network segment 10.1.234.0/24 belong to area 0. The network segment connecting R3 and R5 belongs to area 1. The Loopback0 interface of R5 belongs to the OSPF external network.

At the same time, in order to specify the router ID of the device, you configure the device to use a fixed address as the router ID.

On the interconnected network between R1, R2, R3, and R4, it is necessary to intervene in the election of DR and BDR. In actual use, R3 is defined as DR and R2 is defined as BDR. R4 devices are defined as DROther.

Learning tasks

Step 1. Basic configuration and IP addressing

Configure IP addresses and masks for all routers. When configuring, note that all loopback interface configuration masks are 24 bits, which is simulated as a separate network segment.

<R1>system-view

Enter system view, return user view with Ctrl+Z.

[R1]interface GigabitEthernet 0/0/0

[R1-GigabitEthernet0/0/0]ip address 10.1.234.1 24

[R1-GigabitEthernet0/0/0]quit

[R1]interface LoopBack 0

[R1-LoopBack0]ip address 10.0.1.1 24

[R1-LoopBack0]quit

<R2>system-view

Enter system view, return user view with Ctrl+Z.

[R2]interface GigabitEthernet 0/0/0

[R2-GigabitEthernet0/0/0]ip address 10.1.234.2 24

[R2-GigabitEthernet0/0/0]quit

[R2]interface LoopBack 0

[R2-LoopBack0]ip address 10.0.2.2 24

[R2-LoopBack0]quit

<R3>system-view

Enter system view, return user view with Ctrl+Z.

[R3]interface GigabitEthernet 0/0/0

[R3-GigabitEthernet0/0/0]ip address 10.1.234.3 24

[R3-GigabitEthernet0/0/0]quit

[R3]interface Serial 3/0/0

[R3-Serial3/0/0]ip address 10.0.35.3 24

[R3-Serial3/0/0]quit

[R3]interface LoopBack 0

[R3-LoopBack0]ip address 10.0.3.3 24

[R3-LoopBack0]quit

<R4>system-view

Enter system view, return user view with Ctrl+Z.

[R4]interface GigabitEthernet 0/0/0

[R4-GigabitEthernet0/0/0]ip address 10.1.234.4 24

[R4-GigabitEthernet0/0/0]quit

[R4]interface LoopBack 0

[R4-LoopBack0]ip address 10.0.4.4 24

[R4-LoopBack0]quit

<R5>system-view

Enter system view, return user view with Ctrl+Z.

[R5]interface Serial 1/0/0

[R5-Serial1/0/0]ip address 10.0.35.5 24

[R5-Serial1/0/0]quit

[R5]interface LoopBack 0

[R5-LoopBack0]ip address 10.0.5.5 24

[R5-LoopBack0]quit

After the configuration is complete, test the connectivity of the direct link.

[R1]ping -c 1 10.1.234.2

  PING 10.1.234.2: 56  data bytes, press CTRL_C to break

    Reply from 10.1.234.2: bytes=56 Sequence=1 ttl=255 time=13 ms

  --- 10.1.234.2 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 13/13/13 ms

[R1]ping -c 1 10.1.234.4

  PING 10.1.234.4: 56  data bytes, press CTRL_C to break

    Reply from 10.1.234.4: bytes=56 Sequence=1 ttl=255 time=6 ms

  --- 10.1.234.4 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 6/6/6 ms

[R3]ping -c 1 10.1.234.1

  PING 10.1.234.1: 56  data bytes, press CTRL_C to break

    Reply from 10.1.234.1: bytes=56 Sequence=1 ttl=255 time=13 ms

  --- 10.1.234.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 13/13/13 ms

[R3]ping -c 1 10.0.35.5

  PING 10.0.35.5: 56  data bytes, press CTRL_C to break

    Reply from 10.0.35.5: bytes=56 Sequence=1 ttl=255 time=32 ms

  --- 10.0.35.5 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 32/32/32 ms

Step 2. Configure multi-area OSPF

Configure GigabitEthernet 0/0/0 to belong to area 0 and loopback 0 to area 2 on R1. For loopback interfaces in all OSPF areas, change the OSPF network type to Broadcast so that OSPF can advertise the real mask information of the loopback interface.

[R1]ospf 1 router-id 10.0.1.1

[R1-ospf-1]area 0

[R1-ospf-1-area-0.0.0.0]network 10.1.234.1 0.0.0.0

[R1-ospf-1-area-0.0.0.0]quit

[R1-ospf-1]area 2

[R1-ospf-1-area-0.0.0.2]network 10.0.1.1 0.0.0.0

[R1-ospf-1-area-0.0.0.2]quit

[R1-ospf-1]quit

[R1]interface LoopBack 0

[R1-LoopBack0]ospf network-type broadcast

[R1-LoopBack0]quit

All interfaces of R2 and R4 are located in area 0.

[R2]ospf 1 router-id 10.0.2.2

[R2-ospf-1]area 0

[R2-ospf-1-area-0.0.0.0]network 10.1.234.2 0.0.0.0

[R2-ospf-1-area-0.0.0.0]network 10.0.2.2 0.0.0.0

[R2-ospf-1-area-0.0.0.0]quit

[R2-ospf-1]quit

[R2-]interface LoopBack 0

[R2-LoopBack0]ospf network-type broadcast

[R2-LoopBack0]quit

[R4]ospf 1 router-id 10.0.4.4

[R4-ospf-1]area 0

[R4-ospf-1-area-0.0.0.0]network 10.1.234.4 0.0.0.0

[R4-ospf-1-area-0.0.0.0]network 10.0.4.4 0.0.0.0

[R4-ospf-1-area-0.0.0.0]quit

[R4-ospf-1]quit

[R4-]interface LoopBack 0

[R4-LoopBack0]ospf network-type broadcast

[R4-LoopBack0]quit

Configure Loopback 0 and GigabitEthernet 0/0/0 to belong to area 0 on R3, and Serial 3/0/0 to belong to area 2.

[R3]ospf 1 router-id 10.0.3.3

[R3-ospf-1]area 0

[R3-ospf-1-area-0.0.0.0]network 10.1.234.3 0.0.0.0

[R3-ospf-1-area-0.0.0.0]network 10.0.3.3 0.0.0.0

[R3-ospf-1-area-0.0.0.0]quit

[R3-ospf-1]area 1

[R3-ospf-1-area-0.0.0.1]network 10.0.35.3 0.0.0.0

[R3-ospf-1-area-0.0.0.1]quit

[R3-ospf-1]quit

[R3]interface LoopBack 0

[R3-LoopBack0]ospf network-type broadcast

[R3-LoopBack0]quit

Configure Serial 1/0/0 on R5 to belong to area 1, and loopback 0 to not belong to any area.

[R5]osp 1 router-id 10.0.5.5

[R5-ospf-1]area 1

[R5-ospf-1-area-0.0.0.1]network 10.0.35.5 0.0.0.0

[R5-ospf-1-area-0.0.0.1]quit

[R5-ospf-1]quit

After the configuration is complete, check the routing table of the device on R1.

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 14       Routes : 14       

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0 D   10.0.1.1 LoopBack0

       10.0.1.1/32 Direct  0    0 D   127.0.0.1 LoopBack0

     10.0.1.255/32 Direct  0    0 D   127.0.0.1 LoopBack0

       10.0.2.0/24 OSPF  10   1 D   10.1.234.2    GigabitEthernet0/0/0

       10.0.3.0/24 OSPF  10   1 D   10.1.234.3    GigabitEthernet0/0/0

       10.0.4.0/24 OSPF  10   1 D   10.1.234.4    GigabitEthernet0/0/0

      10.0.35.0/24 OSPF  10   1563 D   10.1.234.3    GigabitEthernet0/0/0

     10.1.234.0/24 Direct  0    0 D   10.1.234.1    GigabitEthernet0/0/0

     10.1.234.1/32 Direct  0    0 D   127.0.0.1    GigabitEthernet0/0/0

   10.1.234.255/32 Direct  0    0 D   127.0.0.1    GigabitEthernet0/0/0

      127.0.0.0/8 Direct 0 0 D 127.0.0.1 InLoopBack0

      127.0.0.1/32 Direct 0 0 D 127.0.0.1 InLoopBack0

127.255.255.255/32Direct 0 0 D 127.0.0.1 InLoopBack0

255.255.255.255/32Direct 0 0 D 127.0.0.1 InLoopBack0

Except the network 10.0.5.5/24 which is not advertised into OSPF, R1 already has the routing table of the whole network.

Test network connectivity.

[R1]ping -c 1 10.0.2.2

  PING 10.0.2.2: 56  data bytes, press CTRL_C to break

    Reply from 10.0.2.2: bytes=56 Sequence=1 ttl=255 time=2 ms

  --- 10.0.2.2 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 2/2/2 ms

[R1]ping -c 1 10.0.4.4

  PING 10.0.4.4: 56  data bytes, press CTRL_C to break

    Reply from 10.0.4.4: bytes=56 Sequence=1 ttl=255 time=3 ms

  --- 10.0.4.4 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

round-trip min/avg/max = 3/3/3 ms

[R3]ping -c 1 10.0.1.1

  PING 10.0.1.1: 56  data bytes, press CTRL_C to break

    Reply from 10.0.1.1: bytes=56 Sequence=1 ttl=255 time=3 ms

  --- 10.0.1.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 3/3/3 ms

Run the display ospf brief command on R1 to view basic OSPF information running on the router. We can see that since the loopback 0 interface of R1 is located in area 2, R1 becomes an ABR. The network connected to the GigabitEthernet 0/0/0 interface of R1 is a broadcast network, and R1 is the DR of this network segment.

[R1]display ospf brief

         OSPF Process 1 with Router ID 10.0.1.1

                 OSPF Protocol Information

 RouterID: 10.0.1.1         Border Router:  AREA 

 Multi-VPN-Instance is not enabled

 Global DS-TE Mode: Non-Standard IETF Mode

 Graceful-restart capability: disabled

 Helper support capability  : not configured

 Applications Supported: MPLS Traffic-Engineering

 Spf-schedule-interval: max 10000ms, start 500ms, hold 1000ms

 Default ASE parameters: Metric: 1 Tag: 1 Type: 2

 Route Preference: 10

 ASE Route Preference: 150

 SPF Computation Count: 22    

 RFC 1583 Compatible

 Retransmission limitation is disabled

 Area Count: 2   Nssa Area Count: 0

 ExChange/Loading Neighbors: 0

 Process total up interface count: 2

 Process valid up interface count: 1

 Area: 0.0.0.0          (MPLS TE not enabled)

 Authtype: None   Area flag: Normal

 SPF scheduled Count: 22    

 ExChange/Loading Neighbors: 0

 Router ID conflict state: Normal

 Area interface up count: 1

 Interface: 10.1.234.1 (GigabitEthernet0/0/0)

 Cost: 1       State: DR        Type: Broadcast    MTU: 1500  

 Priority: 1

 Designated Router: 10.1.234.1

 Backup Designated Router: 10.1.234.2

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

 Area: 0.0.0.2          (MPLS TE not enabled)

 Authtype: None   Area flag: Normal

 SPF scheduled Count: 20    

 ExChange/Loading Neighbors: 0

 Router ID conflict state: Normal

 Area interface up count: 1

 Interface: 10.0.1.1 (LoopBack0)

 Cost: 0       State: DR        Type: Broadcast    MTU: 1500  

 Priority: 1

 Designated Router: 10.0.1.1

 Backup Designated Router: 0.0.0.0

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

Run the display ospf peer brief command to check the establishment of the OSPF neighbor relationship of the router. Since R1 is the DR, it forms adjacencies with all routers on the network segment. If you check the neighbors on R3, you can find that there is only a neighbor relationship between R3 and R4, but no adjacency relationship.

[R1]display ospf peer brief

         OSPF Process 1 with Router ID 10.0.1.1

                  Peer Statistic Information

 ----------------------------------------------------------------------------

 Area Id          Interface                        Neighbor id      State    

 0.0.0.0          GigabitEthernet0/0/0             10.0.2.2         Full        

 0.0.0.0          GigabitEthernet0/0/0             10.0.3.3         Full        

 0.0.0.0          GigabitEthernet0/0/0             10.0.4.4         Full        

 ----------------------------------------------------------------------------

[R3]display ospf peer brief

         OSPF Process 1 with Router ID 10.0.3.3

                  Peer Statistic Information

 ----------------------------------------------------------------------------

 Area Id          Interface                        Neighbor id      State    

 0.0.0.0          GigabitEthernet0/0/0 10.0.1.1         Full        

 0.0.0.0          GigabitEthernet0/0/0 10.0.2.2         Full        

 0.0.0.0          GigabitEthernet0/0/0 10.0.4.4         2-Way       

 0.0.0.1          Serial3/0/0 10.0.5.5         Full        

 ----------------------------------------------------------------------------

Run the display ospf lsdb command on R5 to check the OSPF database information of the router.

[R5]display ospf lsdb

         OSPF Process 1 with Router ID 10.0.5.5

                 Link State Database

                         Area: 0.0.0.1

 Type      LinkState ID      AdvRouter          Age  Len   Sequence   Metric

 Router    10.0.5.5 10.0.5.5          1182  48    80000002    1562

 Router    10.0.3.3 10.0.3.3          1183  48    80000002    1562

 Sum-Net   10.0.3.0 10.0.3.3          1429  28    80000001       0

 Sum-Net   10.0.2.0 10.0.3.3          1429  28    80000001       1

 Sum-Net   10.0.1.0 10.0.3.3          1429  28    80000001       1

 Sum-Net   10.1.234.0 10.0.3.3          1429  28    80000001       1

 Sum-Net   10.0.4.0 10.0.3.3          1430  28    80000001       1

It can be seen that since there are only 2 routers in area 1, there are only 2 type 1 LSAs in R5's lsdb, and the remaining 5 type 3 LSAs are inter-area routes advertised by R3 to R5.

Run the display ospf lsdb command on R2 to check the OSPF database information of the router.

[R2]display ospf lsdb

         OSPF Process 1 with Router ID 10.0.2.2

                 Link State Database

                         Area: 0.0.0.0

 Type      LinkState ID       AdvRouter          Age  Len   Sequence   Metric

 Router    10.0.3.3 10.0.3.3             4  48    80000009       1

 Router    10.0.4.4 10.0.4.4           150  48    80000009       1

 Router    10.0.2.2 10.0.2.2           149  48    8000000C       1

 Router    10.0.1.1 10.0.1.1           149  36    8000000B       1

 Network   10.1.234.1 10.0.1.1           149  40    80000007       0

 Sum-Net   10.0.35.0 10.0.3.3          1790  28    80000001    1562

 Sum-Net   10.0.1.0 10.0.1.1           817  28    80000002       0

In addition to the four Type 1 LSAs on R2, there is also a Type 2 LSA. GigabitEthernet 0/0/0 of R2 is connected to a broadcast network, and the DR on this network will generate a Type 2 LSA to describe all neighbors. Here we can know from the AdvRouter field that the router that generated this LSA is R1, and that R1 is the result of the DR of this network segment.

Run the display ospf lsdb command on R1 to check the OSPF database information of the router.

[R1]display ospf lsdb

         OSPF Process 1 with Router ID 10.0.1.1

                 Link State Database

                         Area: 0.0.0.0

 Type      LinkState ID       AdvRouter          Age  Len   Sequence   Metric

 Router    10.0.3.3 10.0.3.3           447  48    80000009       1

 Router    10.0.4.4 10.0.4.4           592  48    80000009       1

 Router    10.0.2.2 10.0.2.2           592  48    8000000C       1

 Router    10.0.1.1 10.0.1.1           591  36    8000000B       1

 Network   10.1.234.1 10.0.1.1           591  40    80000007       0

 Sum-Net   10.0.35.0 10.0.3.3           434  28    80000002    1562

 Sum-Net   10.0.1.0 10.0.1.1          1259  28    80000002       0

                         Area: 0.0.0.2

 Type      LinkState ID      AdvRouter          Age  Len   Sequence   Metric

 Router    10.0.1.1 10.0.1.1          1223  36    80000004       0

 Sum-Net   10.0.35.0 10.0.1.1           433  28    80000002    1563

 Sum-Net   10.0.3.0 10.0.1.1           541  28    80000002       1

 Sum-Net   10.0.2.0 10.0.1.1           909  28    80000002       1

 Sum-Net   10.1.234.0 10.0.1.1          1269  28    80000002       1

 Sum-Net   10.0.4.0 10.0.1.1           711  28    80000002       1

Since the loopback 0 interface of R1 is located in area 2, there are two area LSDBs on R1, namely area 0 and area 2.

Run the display ospf lsdb command on R4 to check the OSPF database information of the router.

[R4]display ospf lsdb

         OSPF Process 1 with Router ID 10.0.4.4

                 Link State Database

                         Area: 0.0.0.0

 Type      LinkState ID      AdvRouter          Age  Len   Sequence   Metric

 Router    10.0.3.3 10.0.3.3           745  48    80000009       1

 Router    10.0.4.4 10.0.4.4           888  48    80000009       1

 Router    10.0.2.2 10.0.2.2           889  48    8000000C       1

 Router    10.0.1.1 10.0.1.1           889  36    8000000B       1

 Network   10.1.234.1 10.0.1.1           889  40    80000007       0

 Sum-Net   10.0.35.0 10.0.3.3           732  28    80000002    1562

 Sum-Net   10.0.1.0 10.0.1.1          1556  28    80000002       0

Note that due to differences in the roles of OSPF routers, the contents of the OSPF link state database will also vary. Compare and analyze the differences between R5, R2, R1 and R4 link state databases.

Step 3. Modify the router OSPF interface priority to affect DR election

Set the priority of the G0/0/0 interface of R3 to 255 to ensure that R3 becomes the DR of network segment 10.1.234.0/24. Change the priority of the G0/0/0 interface of R2 to 254 to ensure that R2 becomes the BDR of the network segment 10.1.234.0/24. Modify the G0/0/0 interface priority of R4 to 0 to ensure that R4 does not participate in the DR/BDR election, but becomes the DROther of the 10.1.234.0/24 network segment.

[R3]interface GigabitEthernet 0/0/0

[R3-GigabitEthernet0/0/0]ospf dr-priority 255

[R3-GigabitEthernet0/0/0]quit

[R2]interface GigabitEthernet 0/0/0

[R2-GigabitEthernet0/0/0]ospf dr-priority 254

[R2-GigabitEthernet0/0/0]quit

[R4]interface GigabitEthernet 0/0/0

[R4-GigabitEthernet0/0/0]ospf dr-priority 0

[R4-GigabitEthernet0/0/0]quit

After the configuration is complete, the DR/BDR role cannot be preempted because the DR/BDR has been elected. Therefore, you must close the G0/0/0 interfaces of R1, R2, R3, and R4, and open the G0/0/0 interfaces of R3, R2, R1, and R4 in sequence.

[R1]interface GigabitEthernet 0/0/0

[R1-GigabitEthernet0/0/0]shutdown

[R2]interface GigabitEthernet 0/0/0

[R2-GigabitEthernet0/0/0]shutdown

[R3]interface GigabitEthernet 0/0/0

[R3-GigabitEthernet0/0/0]shutdown

[R4]interface GigabitEthernet 0/0/0

[R4-GigabitEthernet0/0/0]shutdown

[R1-GigabitEthernet0/0/0]undo shutdown

[R1-GigabitEthernet0/0/0]quit

[R2-GigabitEthernet0/0/0]undo shutdown

[R2-GigabitEthernet0/0/0]quit

[R3-GigabitEthernet0/0/0]undo shutdown

[R3-GigabitEthernet0/0/0]quit

[R4-GigabitEthernet0/0/0]undo shutdown

[R4-GigabitEthernet0/0/0]quit

Check the DR/BDR election status of network segment 10.1.234.0/24.

[R3]display ospf peer

         OSPF Process 1 with Router ID 10.0.3.3

                 Neighbors

 Area 0.0.0.0 interface 10.1.234.3(GigabitEthernet0/0/0)'s neighbors

 Router ID: 10.0.1.1         Address: 10.1.234.1      

   State: Full  Mode:Nbr is  Slave  Priority: 1

   DR: 10.1.234.3   BDR: 10.1.234.2   PERSON: 0    

   Dead timer due in 29  sec

   Retrans timer interval: 3

   Neighbor is up for 00:02:17     

   Authentication Sequence: [ 0 ]

 Router ID: 10.0.2.2         Address: 10.1.234.2      

   State: Full  Mode:Nbr is  Slave  Priority: 254

   DR: 10.1.234.3 BDR: 10.1.234.2 PERSON: 0    

   Dead timer due in 35  sec

   Retrans timer interval: 6

   Neighbor is up for 00:01:14     

   Authentication Sequence: [ 0 ]

 Router ID: 10.0.4.4         Address: 10.1.234.4      

   State: Full  Mode:Nbr is  Master  Priority: 0

   DR: 10.1.234.3 BDR: 10.1.234.2 PERSON: 0    

   Dead timer due in 32  sec

   Retrans timer interval: 3

   Neighbor is up for 00:01:26     

   Authentication Sequence: [ 0 ]

                                          

                 Neighbors

 Area 0.0.0.1 interface 10.0.35.3(Serial3/0/0)'s neighbors

 Router ID: 10.0.5.5         Address: 10.0.35.5       

   State: Full  Mode:Nbr is  Master  Priority: 1

   DR: None   BDR: None   MTU: 0    

   Dead timer due in 27  sec

   Retrans timer interval: 4

   Neighbor is up for 00:53:37     

   Authentication Sequence: [ 0 ]

After restarting the interface, R3 becomes the DR of the network segment, and R2 becomes the BDR.

Check the neighbor relationship between R4 and R1.

[R4]display ospf peer 10.0.1.1  

         OSPF Process 1 with Router ID 10.0.4.4

                 Neighbors

 Area 0.0.0.0 interface 10.1.234.4(GigabitEthernet0/0/0)'s neighbors

 Router ID: 10.0.1.1         Address: 10.1.234.1      

   State: 2-Way  Mode:Nbr is  Slave  Priority: 1

   DR: 10.1.234.3 BDR: 10.1.234.2 PERSON: 0    

   Dead timer due in 30  sec

   Retrans timer interval: 0

   Neighbor is up for 00:00:00     

   Authentication Sequence: [ 0 ]

After the neighbor relationship is stable, since both R1 and R4 are DROther routers, they only form a neighbor relationship and remain in the 2-way state.

Step 4. Configure to summarize direct routes and import them into the OSPF area

The Loopback0 interface of R5 does not belong to the OSPF area. Import this direct route into the OSPF area.

[R5]ospf 1

[R5-ospf-1]import-route direct

[R5-ospf-1]quit

Check the imported external routes on R1 and R3.

[R1]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 6        Routes : 6        

OSPF routing table status : <Active>

         Destinations : 6        Routes : 6

Destination/Mask   Proto   Pre  Cost    Flags NextHop         Interface

       10.0.2.0/24  OSPF    10   1 D   10.1.234.2    GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    10   1 D   10.1.234.3    GigabitEthernet0/0/0

       10.0.4.0/24  OSPF    10   1 D   10.1.234.4    GigabitEthernet0/0/0

       10.0.5.0/24  O_ASE   150  1 D   10.1.234.3    GigabitEthernet0/0/0

      10.0.35.0/24  OSPF    10   1563 D   10.1.234.3    GigabitEthernet0/0/0

      10.0.35.3/32  O_ASE   150  1 D   10.1.234.3    GigabitEthernet0/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

[R3]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 5        Routes : 5        

OSPF routing table status : <Active>

         Destinations : 4        Routes : 4

Destination/Mask   Proto   Pre  Cost    Flags NextHop         Interface

       10.0.1.0/24  OSPF    10   1 D   10.1.234.1    GigabitEthernet0/0/0

       10.0.2.0/24  OSPF    10   1 D   10.1.234.2    GigabitEthernet0/0/0

       10.0.4.0/24  OSPF    10   1 D   10.1.234.4    GigabitEthernet0/0/0

       10.0.5.0/24  O_ASE   150  1 D   10.0.35.5       Serial3/0/0

OSPF routing table status : <Inactive>

         Destinations : 1        Routes : 1

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

      10.0.35.3/32  O_ASE   150  1             10.0.35.5       Serial3/0/0

Two external routes are seen on both R1 and R3, namely 10.0.5.0/24 and 10.0.35.3/32. 10.0.5.0/24 is the loopback interface of R5, but why is there another 10.0.35.3/32?

Check the routing table of R5. Since R3 and R5 are encapsulated in the form of PPP, the interface address of Serial 3/0/0 of R3 will appear in the routing table of R5 as a direct route. Therefore, after running import-route direct on R5, the routing entry is also published (the output below omits other routing entries ) .

[R5]display  ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 16       Routes : 16       

Destination/Mask     Proto   Pre  Cost     Flags NextHop         Interface

      10.0.35.0/24 Direct  0    0           D   10.0.35.5       Serial1/0/0

      10.0.35.3/32 Direct  0    0           D   10.0.35.3       Serial1/0/0

      10.0.35.5/32 Direct 0 0 D 127.0.0.1 InLoopBack0

    10.0.35.255/32 Direct 0 0 D 127.0.0.1 InLoopBack0

Finally test network connectivity.

[R1]ping -c 1 10.0.5.5

  PING 10.0.5.5: 56  data bytes, press CTRL_C to break

    Reply from 10.0.5.5: bytes=56 Sequence=1 ttl=254 time=41 ms

  --- 10.0.5.5 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 41/41/41 ms

Check the status of OSPF external routes in the link state database on R1. We can see that there are three external routes in the LSDB of R1: 10.0.5.0/24, 10.0.35.0/24, and 10.0.35.3/32.

There are only 2 external routes seen in the routing table of R1, and the other one is missing.

 [R1]display ospf lsdb ase

         OSPF Process 1 with Router ID 10.0.1.1

                 Link State Database

  Type      : External

  Ls id     : 10.0.5.0

  Adv rtr : 10.0.5.5  

  Ls age    : 834

  Len       : 36

  Options   :  E  

  seq#      : 80000001

  chksum    : 0xa904

  Net mask  : 255.255.255.0

  TOS 0  Metric: 1

  E type    : 2

  Forwarding Address : 0.0.0.0

  Tag       : 1

  Priority  : Low

  Type      : External

  Ls id     : 10.0.35.0

  Adv rtr : 10.0.5.5  

  Ls age    : 1342

  Len       : 36

  Options   :  E  

  seq#      : 80000001

  chksum    : 0x5e31                      

  Net mask  : 255.255.255.0

  TOS 0  Metric: 1

  E type    : 2

  Forwarding Address : 0.0.0.0

  Tag       : 1

  Priority  : Low

  Type      : External

  Ls id     : 10.0.35.3

  Adv rtr : 10.0.5.5  

  Ls age    : 1344

  Len       : 36

  Options   :  E  

  seq#      : 80000001

  chksum    : 0x404c

  Net mask  : 255.255.255.255

  TOS 0  Metric: 1

  E type    : 2

  Forwarding Address : 0.0.0.0

  Tag       : 1

  Priority  : Medium

After comparison, it can be found that the route 10.0.35.0/24 appears in the routing table as an internal route.

Examining the Type 3 LSA in R1's LSDB reveals this entry: 10.0.35.0/24.

[R1]display ospf lsdb summary 10.0.35.0

         OSPF Process 1 with Router ID 10.0.1.1

                         Area: 0.0.0.0

                 Link State Database

  Type      : Sum-Net

  Ls id     : 10.0.35.0

  Adv rtr : 10.0.3.3  

  Ls age    : 236

  Len       : 28

  Options   :  E  

  seq#      : 80000007

  chksum    : 0x14e5

  Net mask  : 255.255.255.0

  Tos 0  metric: 1562

  Priority  : Low

                         Area: 0.0.0.2

                 Link State Database

  Type      : Sum-Net

  Ls id     : 10.0.35.0

  Adv rtr : 10.0.1.1  

  Ls age    : 1637

  Len       : 28

  Options   :  E  

  seq#      : 80000002

  chksum    : 0x42bf

  Net mask  : 255.255.255.0

  Tos 0  metric: 1563

  Priority  : Low

It can be seen that, when the network bit and mask of the route advertised by the third type and the fifth type LSA are the same, OSPF prefers to add the route advertised by the third type LSA to the routing table.

Step 5. View various types of LSA

View the detailed content of one type of LSA 10.0.1.0 in Area0 and Area2 on R1.

[R1]display ospf lsdb router 10.0.1.1

         OSPF Process 1 with Router ID 10.0.1.1

                         Area: 0.0.0.0

                 Link State Database

  Type : Router

  Ls id : 10.0.1.1

  Adv rtr : 10.0.1.1  

  Ls age : 591

  Len : 36

  Options :  ABR  E  

  seq# : 8000001e

  chksum : 0xbc70

  Link count: 1

   * Link ID: 10.1.234.3   

     Data : 10.1.234.1   

     Link Type: TransNet     

     Metric : 1

                         Area: 0.0.0.2

                 Link State Database

  Type : Router

  Ls id : 10.0.1.1

  Adv rtr : 10.0.1.1  

  Ls age : 627

  Len : 36

  Options :  ABR  E  

  seq# : 80000008

  chksum : 0x1018

  Link count: 1                           

   * Link ID: 10.0.1.0     

     Date : 255.255.255.0 

     Link Type: StubNet      

     Metric : 0

     Priority: Low

For a type of LSA, the Ls id field indicates the Router ID of the router that generated this LSA.

R1 generates two Type 1 LSAs, one of which is flooded in area 0. R1 is connected to a Transit network segment in area 0, so the Link Type field is TransNet. For TransNet, the Link ID field is the IP address of the DR interface on the network segment, and the Data field is the IP address of the local interface.

The second type-1 LSA is flooded by R1 to area 2, and R1 is connected to area 2 through a loopback interface. For the Loopback interface, the Link Type is StubNet. At this time, the Link ID indicates the IP network address of the Stub network segment, and Data indicates the network mask of the Stub network segment.

Check the details of Type 2 LSA 10.1.234.0 in Area0 on R2, R3, and R4 respectively.

[R2]display ospf lsdb network 10.1.234.3

         OSPF Process 1 with Router ID 10.0.2.2

                         Area: 0.0.0.0

                 Link State Database

  Type      : Network

  Ls id     : 10.1.234.3

  Adv rtr : 10.0.3.3  

  Ls age    : 115

  Len       : 40

  Options   :  E  

  seq#      : 8000000f

  chksum: 0x807e

  Net mask  : 255.255.255.0

  Priority  : Low

     Attached Router    10.0.3.3

     Attached Router    10.0.1.1

     Attached Router    10.0.2.2

     Attached Router    10.0.4.4

It is found that the LSA seen on R2, R3 and R4 is the same.

Similarly, the Adv rtr field can be used to know that this LSA is generated by R3. The Ls id of the second type of LSA describes the interface IP address of the DR on the network segment, and the Attached Router is the Router ID of all routers on the network segment.

View the details of three types of LSA 10.0.35.0/24 in Area0 on R1 and R3.

[R3]display ospf lsdb summary 10.0.35.0

         OSPF Process 1 with Router ID 10.0.3.3

                         Area: 0.0.0.0

                 Link State Database

  Type      : Sum-Net

  Ls id     : 10.0.35.0

  Adv rtr : 10.0.3.3 

  Ls age    : 591

  Len       : 28

  Options   :  E  

  seq#      : 8000000a

  chksum    : 0xee8

  Net mask  : 255.255.255.0

  Tos 0  metric: 1562

  Priority  : Low

From the output, we can see that the route is advertised by R3 to area 0. Ls id is the network address of the advertised destination network segment, and Net mask describes the mask information of the destination network segment.

[R1]display ospf lsdb summary 10.0.35.0

         OSPF Process 1 with Router ID 10.0.1.1

                         Area: 0.0.0.0

                 Link State Database

  Type      : Sum-Net

  Ls id     : 10.0.35.0

  Adv rtr : 10.0.3.3

  Ls age    : 136

  Len       : 28

  Options   :  E  

  seq#      : 80000004

  chksum    : 0x1ae2

  Net mask  : 255.255.255.0

  Tos 0  metric: 1562

  Priority  : Low

                         Area: 0.0.0.2

                 Link State Database

  Type      : Sum-Net

  Ls id     : 10.0.35.0

  Adv rtr : 10.0.1.1

  Ls age    : 382

  Len       : 28

  Options   :  E  

  seq#      : 80000002

  chksum    : 0x42bf

  Net mask  : 255.255.255.0

  Tos 0  metric: 1563

  Priority  : Low  

There are two type-3 LSAs describing 10.0.35.0/24 on R1. Among them, from the Adv rtr field, we can know that this LSA in area 0 is generated by R3. Since R1 itself is also an ABR, after receiving this LSA, R1 generates another LSA and announces it to area 2.

Check the details of four types of LSA 10.0.5.0 in Area2 on R1. The fourth type of LSA is used to describe how to reach the ASBR.

[R1]display ospf lsdb asbr 10.0.5.5

         OSPF Process 1 with Router ID 10.0.1.1

                         Area: 0.0.0.0

                 Link State Database

  Type      : Sum-Asbr

  Ls id     : 10.0.5.5

  Adv rtr : 10.0.3.3  

  Ls age    : 1119

  Len       : 28

  Options   :  E  

  seq#      : 80000008

  chksum    : 0x1df3

  Tos 0  metric: 1562

                         Area: 0.0.0.2

                 Link State Database

  Type      : Sum-Asbr

  Ls id     : 10.0.5.5

  Adv rtr : 10.0.1.1  

  Ls age    : 1118

  Len       : 28

  Options   :  E  

  seq#      : 80000008

  chksum    : 0x41d2

  Tos 0  metric: 1563

From the output, we can see that R1 has received a Type 4 LSA from R3. Ls id is used to describe the router ID of the ASBR. Since this type of LSA cannot be flooded across areas, R1 generates another Type 4 LSA to flood into Area 2.

This LSA exists in the LSDBs of area 0 of R2, R4, and R3, because these routers are not in the same area as the ASBR (R5), and they need to know the location of the ASBR through the fourth type of LSA.

[R2]display ospf lsdb asbr

         OSPF Process 1 with Router ID 10.0.2.2

                         Area: 0.0.0.0

                 Link State Database

  Type      : Sum-Asbr

  Ls id     : 10.0.5.5

  Adv rtr : 10.0.3.3  

  Ls age    : 1676

  Len       : 28

  Options   :  E  

  seq#      : 80000008

  chksum    : 0x1df3

  Tos 0  metric: 1562

In area 1, there is no type 4 LSA, and routers in the same area do not need to rely on this LSA to know the location of the ASBR.

Step 6. Observe LSR, LSU and LSAck

We first observe the process of sending OSPF Update packets and ACK packets. Turn on debugging ospf packet update and debugging ospf packet ack on R1 .

<R1>terminal monitor

Info: Current terminal monitor is on

<R1>terminal debugging

Info: Current terminal debugging is on

<R1>debugging ospf packet update

<R1>debugging ospf packet ack

By default, the network runs stably, and OSPF routers are updated every 30 minutes. To trigger queries and update information, we delete the Loopback 0 interface of R3.

[R3]undo interface LoopBack 0

Info: This operation may take a few seconds. Please wait for a moment...succeeded.

[R3]

Oct 25 2016 15:32:27+00:00 R3 %%01IFNET/4/LINK_STATE(l)[58]:The line protocol IP on the interface LoopBack0 has entered the DOWN state

We can observe that the Update message from 10.1.234.3 is first received on R1. The destination address of the message is 224.0.0.5 (that is, all OSPF routers), which describes a network segment (# Links: 1), followed by the LinkID and LinkData of the network segment.

<R1>

Oct 25 2016 15:24:57.790.1+00:00 R1 RM/6/RMDEBUG:

 FileID: 0xd0178024 Line: 2271 Level: 0x20

 OSPF 1: RECV Packet. Interface: GigabitEthernet0/0/0

<R1>

Oct 25 2016 15:24:57.790.2+00:00 R1 RM/6/RMDEBUG:  Source Address: 10.1.234.3

Oct 25 2016 15:24:57.790.3+00:00 R1 RM/6/RMDEBUG:  Destination Address: 224.0.0.5

Oct 25 2016 15:24:57.790.4+00:00 R1 RM/6/RMDEBUG:  Ver# 2, Type: 4 (Link-State Update)

Oct 25 2016 15:24:57.790.5+00:00 R1 RM/6/RMDEBUG:  Length: 64, Router: 10.0.3.3

Oct 25 2016 15:24:57.790.6+00:00 R1 RM/6/RMDEBUG:  Area: 0.0.0.0, Chksum: d8ce

Oct 25 2016 15:24:57.790.7+00:00 R1 RM/6/RMDEBUG:  AuType: 00

Oct 25 2016 15:24:57.790.8+00:00 R1 RM/6/RMDEBUG:  Key(ascii): * * * * * * * *

Oct 25 2016 15:24:57.790.9+00:00 R1 RM/6/RMDEBUG:  # LSAS: 1

Oct 25 2016 15:24:57.790.10+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 15:24:57.790.11+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.3.3

Oct 25 2016 15:24:57.790.12+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 15:24:57.790.13+00:00 R1 RM/6/RMDEBUG:    LSA Age: 1

Oct 25 2016 15:24:57.790.14+00:00 R1 RM/6/RMDEBUG:    Options: ExRouting:ON

Oct 25 2016 15:24:57.790.15+00:00 R1 RM/6/RMDEBUG:    Length: 36, Seq# 80000020

Oct 25 2016 15:24:57.790.16+00:00 R1 RM/6/RMDEBUG:    CheckSum: 9090

Oct 25 2016 15:24:57.790.17+00:00 R1 RM/6/RMDEBUG: NtBit: 0 VBit: 0 EBit: 0 BBit: 1

Oct 25 2016 15:24:57.790.18+00:00 R1 RM/6/RMDEBUG:    # Links: 1

Oct 25 2016 15:24:57.790.19+00:00 R1 RM/6/RMDEBUG: LinkID: 10.1.234.3

Oct 25 2016 15:24:57.790.20+00:00 R1 RM/6/RMDEBUG:      LinkData: 10.1.234.3

Oct 25 2016 15:24:57.790.21+00:00 R1 RM/6/RMDEBUG:      LinkType: 2

Oct 25 2016 15:24:57.790.22+00:00 R1 RM/6/RMDEBUG:      TOS# 0 Metric 1

Finally, the ACK message sent by R1 itself. The source address of the packet is the interface address of R1 GigabitEthernet 0/0/0, and the destination address is 224.0.0.6. This message is sent to DR and BDR. The sequence number of this message is also 80000020.

<R1>

Oct 25 2016 15:24:58.200.1+00:00 R1 RM/6/RMDEBUG:

 FileID: 0xd0178025 Line: 4708 Level: 0x20

 OSPF 1: SEND Packet. Interface: GigabitEthernet0/0/0

<R1>

Oct 25 2016 15:24:58.200.2+00:00 R1 RM/6/RMDEBUG:  Source Address: 10.1.234.1

Oct 25 2016 15:24:58.200.3+00:00 R1 RM/6/RMDEBUG:  Destination Address: 224.0.0.6

Oct 25 2016 15:24:58.200.4+00:00 R1 RM/6/RMDEBUG:  Ver# 2, Type: 5 (Link-State Ack)

Oct 25 2016 15:24:58.200.5+00:00 R1 RM/6/RMDEBUG:  Length: 44, Router: 10.0.1.1

Oct 25 2016 15:24:58.200.6+00:00 R1 RM/6/RMDEBUG:  Area: 0.0.0.0, Chksum: c5ef

Oct 25 2016 15:24:58.200.7+00:00 R1 RM/6/RMDEBUG:  AuType: 00

Oct 25 2016 15:24:58.200.8+00:00 R1 RM/6/RMDEBUG:  Key(ascii): * * * * * * * *

Oct 25 2016 15:24:58.200.9+00:00 R1 RM/6/RMDEBUG:  # LSA Headers: 1

Oct 25 2016 15:24:58.200.10+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 15:24:58.200.11+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.3.3

Oct 25 2016 15:24:58.200.12+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 15:24:58.200.13+00:00 R1 RM/6/RMDEBUG:    LSA Age: 2

Oct 25 2016 15:24:58.200.14+00:00 R1 RM/6/RMDEBUG:    Options: ExRouting:ON

Oct 25 2016 15:24:58.200.15+00:00 R1 RM/6/RMDEBUG:    Length: 36, Seq# 80000020

Oct 25 2016 15:24:58.200.16+00:00 R1 RM/6/RMDEBUG:    CheckSum: 9090

Next restore the deleted Loopback0 interface on R3.

[R3]interface loopback 0

[R3-LoopBack0]ip address 10.0.3.3 24

[R3-LoopBack0]quit

As before, R1 first receives the Update message from R3, but this time a new network segment is announced in the message, so the value of # Links here is 2, followed by the network number and mask of the newly announced network segment.

<R1>

Oct 25 2016 15:51:26.250.1+00:00 R1 RM/6/RMDEBUG:

 FileID: 0xd0178024 Line: 2271 Level: 0x20

 OSPF 1: RECV Packet. Interface: GigabitEthernet0/0/0

<R1>

Oct 25 2016 15:51:26.250.2+00:00 R1 RM/6/RMDEBUG:  Source Address: 10.1.234.3

Oct 25 2016 15:51:26.250.3+00:00 R1 RM/6/RMDEBUG:  Destination Address: 224.0.0.5

Oct 25 2016 15:51:26.250.4+00:00 R1 RM/6/RMDEBUG:  Ver# 2, Type: 4 (Link-State Update)

Oct 25 2016 15:51:26.250.5+00:00 R1 RM/6/RMDEBUG:  Length: 76, Router: 10.0.3.3

Oct 25 2016 15:51:26.250.6+00:00 R1 RM/6/RMDEBUG:  Area: 0.0.0.0, Chksum: 2c6f

Oct 25 2016 15:51:26.250.7+00:00 R1 RM/6/RMDEBUG:  AuType: 00

Oct 25 2016 15:51:26.250.8+00:00 R1 RM/6/RMDEBUG:  Key(ascii): * * * * * * * *

Oct 25 2016 15:51:26.250.9+00:00 R1 RM/6/RMDEBUG:  # LSAS: 1

Oct 25 2016 15:51:26.250.10+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 15:51:26.250.11+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.3.3

Oct 25 2016 15:51:26.250.12+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 15:51:26.250.13+00:00 R1 RM/6/RMDEBUG:    LSA Age: 1

Oct 25 2016 15:51:26.250.14+00:00 R1 RM/6/RMDEBUG:    Options: ExRouting:ON

Oct 25 2016 15:51:26.250.15+00:00 R1 RM/6/RMDEBUG:    Length: 48, Seq# 8000002a

Oct 25 2016 15:51:26.250.16+00:00 R1 RM/6/RMDEBUG:    CheckSum: 2cca

Oct 25 2016 15:51:26.250.17+00:00 R1 RM/6/RMDEBUG: NtBit: 0 VBit: 0 EBit: 0 BBit: 1

Oct 25 2016 15:51:26.250.18+00:00 R1 RM/6/RMDEBUG:    # Links: 2

Oct 25 2016 15:51:26.250.19+00:00 R1 RM/6/RMDEBUG: LinkID: 10.1.234.3

Oct 25 2016 15:51:26.250.20+00:00 R1 RM/6/RMDEBUG:      LinkData: 10.1.234.3

Oct 25 2016 15:51:26.250.21+00:00 R1 RM/6/RMDEBUG:      LinkType: 2

Oct 25 2016 15:51:26.250.22+00:00 R1 RM/6/RMDEBUG:      TOS# 0 Metric 1

Oct 25 2016 15:51:26.250.23+00:00 R1 RM/6/RMDEBUG:     LinkID: 10.0.3.3

Oct 25 2016 15:51:26.250.24+00:00 R1 RM/6/RMDEBUG:      LinkData: 255.255.255.255

Oct 25 2016 15:51:26.250.25+00:00 R1 RM/6/RMDEBUG:      LinkType: 3

Oct 25 2016 15:51:26.250.26+00:00 R1 RM/6/RMDEBUG:      TOS# 0 Metric 0

R1 first receives the ACK message from the BDR.

 <R1>

Oct 25 2016 15:51:27.90.1+00:00 R1 RM/6/RMDEBUG:

 FileID: 0xd0178024 Line: 2271 Level: 0x20

 OSPF 1: RECV Packet. Interface: GigabitEthernet0/0/0

<R1>

Oct 25 2016 15:51:27.90.2+00:00 R1 RM/6/RMDEBUG:  Source Address: 10.1.234.2

Oct 25 2016 15:51:27.90.3+00:00 R1 RM/6/RMDEBUG:  Destination Address: 224.0.0.5

Oct 25 2016 15:51:27.90.4+00:00 R1 RM/6/RMDEBUG:  Ver# 2, Type: 5 (Link-State Ack)

Oct 25 2016 15:51:27.90.5+00:00 R1 RM/6/RMDEBUG:  Length: 44, Router: 10.0.2.2

Oct 25 2016 15:51:27.90.6+00:00 R1 RM/6/RMDEBUG:  Area: 0.0.0.0, Chksum: 289f

Oct 25 2016 15:51:27.90.7+00:00 R1 RM/6/RMDEBUG:  AuType: 00

Oct 25 2016 15:51:27.90.8+00:00 R1 RM/6/RMDEBUG:  Key(ascii): * * * * * * * *

Oct 25 2016 15:51:27.90.9+00:00 R1 RM/6/RMDEBUG:  # LSA Headers: 1

Oct 25 2016 15:51:27.90.10+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 15:51:27.90.11+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.3.3

Oct 25 2016 15:51:27.90.12+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 15:51:27.90.13+00:00 R1 RM/6/RMDEBUG:    LSA Age: 2

Oct 25 2016 15:51:27.90.14+00:00 R1 RM/6/RMDEBUG:    Options: ExRouting:ON

Oct 25 2016 15:51:27.90.15+00:00 R1 RM/6/RMDEBUG:    Length: 48, Seq# 8000002a

Oct 25 2016 15:51:27.90.16+00:00 R1 RM/6/RMDEBUG:    CheckSum: 2cca

Finally, the ACK message sent by R1 itself.

<R1>

Oct 25 2016 15:51:26.430.1+00:00 R1 RM/6/RMDEBUG:

 FileID: 0xd0178025 Line: 4708 Level: 0x20

 OSPF 1: SEND Packet. Interface: GigabitEthernet0/0/0

<R1>

Oct 25 2016 15:51:26.430.2+00:00 R1 RM/6RMDEBUG:  Source Address: 10.1.234.1

Oct 25 2016 15:51:26.430.3+00:00 R1 RM/6/RMDEBUG:  Destination Address: 224.0.0.6

Oct 25 2016 15:51:26.430.4+00:00 R1 RM/6/RMDEBUG:  Ver# 2, Type: 5 (Link-State Ack)

Oct 25 2016 15:51:26.430.5+00:00 R1 RM/6/RMDEBUG:  Length: 44, Router: 10.0.1.1

Oct 25 2016 15:51:26.430.6+00:00 R1 RM/6/RMDEBUG:  Area: 0.0.0.0, Chksum: 29a1

Oct 25 2016 15:51:26.430.7+00:00 R1 RM/6/RMDEBUG:  AuType: 00

Oct 25 2016 15:51:26.430.8+00:00 R1 RM/6/RMDEBUG:  Key(ascii): * * * * * * * *

Oct 25 2016 15:51:26.430.9+00:00 R1 RM/6/RMDEBUG:  # LSA Headers: 1

Oct 25 2016 15:51:26.430.10+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 15:51:26.430.11+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.3.3

Oct 25 2016 15:51:26.430.12+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 15:51:26.430.13+00:00 R1 RM/6/RMDEBUG:    LSA Age: 1

Oct 25 2016 15:51:26.430.14+00:00 R1 RM/6/RMDEBUG:    Options: ExRouting:ON

Oct 25 2016 15:51:26.430.15+00:00 R1 RM/6/RMDEBUG:    Length: 48, Seq# 8000002a

Oct 25 2016 15:51:26.430.16+00:00 R1 RM/6/RMDEBUG:    CheckSum: 2cca

In the next step we look at the Request message. Normally, the router will not actively send this message. To observe the sending of this message, we restart the OSPF process of R1. What is observed on the router is that R1 initiates an LS Request to R2.

<R1>terminal monitor

Info: Current terminal monitor is on

<R1>terminal debugging

Info: Current terminal debugging is on

<R1>debugging ospf packet update

<R1>debugging ospf packet ack

<R1>debugging ospf packet request

<R1>reset ospf process

Warning: The OSPF process will be reset. Continue? [Y/N]:y

<R1>

Oct 25 2016 16:17:59.750.1+00:00 R1 RM/6/RMDEBUG:

 FileID: 0xd0178025 Line: 2993 Level: 0x20

 OSPF 1: SEND Packet. Interface: GigabitEthernet0/0/0

<R1>

Oct 25 2016 16:17:59.750.2+00:00 R1 RM/6/RMDEBUG:  Source Address: 10.1.234.1

Oct 25 2016 16:17:59.750.3+00:00 R1 RM/6/RMDEBUG:  Destination Address: 10.1.234.2

Oct 25 2016 16:17:59.750.4+00:00 R1 RM/6/RMDEBUG:  Ver# 2, Type: 3 (Link-State Req)

Oct 25 2016 16:17:59.750.5+00:00 R1 RM/6/RMDEBUG:  Length: 156, Router: 10.0.1.1

Oct 25 2016 16:17:59.750.6+00:00 R1 RM/6/RMDEBUG:  Area: 0.0.0.0, Chksum: 8b05

Oct 25 2016 16:17:59.750.7+00:00 R1 RM/6/RMDEBUG:  AuType: 00

Oct 25 2016 16:17:59.750.8+00:00 R1 RM/6/RMDEBUG:  Key(ascii): * * * * * * * *

Oct 25 2016 16:17:59.750.9+00:00 R1 RM/6/RMDEBUG:  # Requesting LSAs: 11

Oct 25 2016 16:17:59.750.10+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 16:17:59.750.11+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.2.2

Oct 25 2016 16:17:59.750.12+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.2.2

Oct 25 2016 16:17:59.750.13+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 16:17:59.750.14+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.1.1

Oct 25 2016 16:17:59.750.15+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.1.1

Oct 25 2016 16:17:59.750.16+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 16:17:59.750.17+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.4.4

Oct 25 2016 16:17:59.750.18+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.4.4

Oct 25 2016 16:17:59.750.19+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 16:17:59.750.20+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.3.3

Oct 25 2016 16:17:59.750.21+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 16:17:59.750.22+00:00 R1 RM/6/RMDEBUG:  LSA Type 2

Oct 25 2016 16:17:59.750.23+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.1.234.3

Oct 25 2016 16:17:59.750.24+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 16:17:59.750.25+00:00 R1 RM/6/RMDEBUG:  LSA Type 3

Oct 25 2016 16:17:59.750.26+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.1.0

Oct 25 2016 16:17:59.750.27+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.1.1

Oct 25 2016 16:17:59.750.28+00:00 R1 RM/6/RMDEBUG:  LSA Type 3

Oct 25 2016 16:17:59.750.29+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.35.0

Oct 25 2016 16:17:59.750.30+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 16:17:59.750.31+00:00 R1 RM/6/RMDEBUG:  LSA Type 4

Oct 25 2016 16:17:59.750.32+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.5.5

Oct 25 2016 16:17:59.750.33+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.3.3

Oct 25 2016 16:17:59.750.34+00:00 R1 RM/6/RMDEBUG:  LSA Type 5

Oct 25 2016 16:17:59.750.35+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.5.0

Oct 25 2016 16:17:59.750.36+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.5.5

Oct 25 2016 16:17:59.750.37+00:00 R1 RM/6/RMDEBUG:  LSA Type 5

Oct 25 2016 16:17:59.750.38+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.35.0

Oct 25 2016 16:17:59.750.39+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.5.5

Oct 25 2016 16:17:59.750.40+00:00 R1 RM/6/RMDEBUG:  LSA Type 5

Oct 25 2016 16:17:59.750.41+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.35.3

Oct 25 2016 16:17:59.750.42+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.5.5

Then R1 receives the LS Request from R3.

<R1>

Oct 25 2016 16:30:10.80.1+00:00 R1 RM/6/RMDEBUG:

 FileID: 0xd0178024 Line: 2271 Level: 0x20

 OSPF 1: RECV Packet. Interface: GigabitEthernet0/0/0

<R1>

Oct 25 2016 16:30:10.80.2+00:00 R1 RM/6/RMDEBUG:  Source Address: 10.1.234.3

Oct 25 2016 16:30:10.80.3+00:00 R1 RM/6/RMDEBUG:  Destination Address: 10.1.234.1

Oct 25 2016 16:30:10.80.4+00:00 R1 RM/6/RMDEBUG:  Ver# 2, Type: 3 (Link-State Req)

Oct 25 2016 16:30:10.80.5+00:00 R1 RM/6/RMDEBUG:  Length: 48, Router: 10.0.3.3

Oct 25 2016 16:30:10.80.6+00:00 R1 RM/6/RMDEBUG:  Area: 0.0.0.0, Chksum: c4c2

Oct 25 2016 16:30:10.80.7+00:00 R1 RM/6/RMDEBUG:  AuType: 00

Oct 25 2016 16:30:10.80.8+00:00 R1 RM/6/RMDEBUG:  Key(ascii): * * * * * * * *

Oct 25 2016 16:30:10.80.9+00:00 R1 RM/6/RMDEBUG:  # Requesting LSAs: 2

Oct 25 2016 16:30:10.80.10+00:00 R1 RM/6/RMDEBUG:  LSA Type 1

Oct 25 2016 16:30:10.80.11+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.1.1

Oct 25 2016 16:30:10.80.12+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.1.1

Oct 25 2016 16:30:10.80.13+00:00 R1 RM/6/RMDEBUG:  LSA Type 3

Oct 25 2016 16:30:10.80.14+00:00 R1 RM/6/RMDEBUG:    LS ID: 10.0.1.0

Oct 25 2016 16:30:10.80.15+00:00 R1 RM/6/RMDEBUG:    Adv Rtr: 10.0.1.1

Additional Experiments : Think and Verify

Assume that there is a router R6 in area 2. What is the difference between it calculating the routing information to reach the 10.0.5.0/24 network segment and the steps of R2 and R3 calculating the information?

When will type 4 LSA appear?

In the experiment, if both R1 and R4 are configured as DROther, what hidden dangers will there be?

final device configuration

<R1>display current-configuration

[V200R007C00SPC600]

#

 sysname R1

#

interface GigabitEthernet0/0/0

 ip address 10.1.234.1 255.255.255.0

#

interface LoopBack0

 ip address 10.0.1.1 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.1.1

 area 0.0.0.0

  network 10.1.234.1 0.0.0.0

 area 0.0.0.2

  network 10.0.1.1 0.0.0.0

#

return

<R2>display current-configuration

[V200R007C00SPC600]

#

 sysname R2

#

interface GigabitEthernet0/0/0

 ip address 10.1.234.2 255.255.255.0

 ospf dr-priority 254

#

interface LoopBack0

 ip address 10.0.2.2 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.2.2

 area 0.0.0.0

  network 10.1.234.2 0.0.0.0

  network 10.0.2.2 0.0.0.0

#

return

<R3>display current-configuration

[V200R007C00SPC600]

#

 sysname R3

#

interface Serial3/0/0

 link-protocol ppp

 ip address 10.0.35.3 255.255.255.0

#

interface GigabitEthernet0/0/0

 ip address 10.1.234.3 255.255.255.0

 ospf dr-priority 255

#

interface LoopBack0

 ip address 10.0.3.3 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.3.3

 area 0.0.0.0

  network 10.1.234.3 0.0.0.0

  network 10.0.3.3 0.0.0.0

 area 0.0.0.1

  network 10.0.35.3 0.0.0.0

#

return

<R4>display current-configuration

[V200R007C00SPC600]

#

 sysname R4

#

interface GigabitEthernet0/0/0

 ip address 10.1.234.4 255.255.255.0

 ospf dr-priority 0

#

interface LoopBack0

 ip address 10.0.4.4 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.4.4

 area 0.0.0.0

  network 10.1.234.4 0.0.0.0

  network 10.0.4.4 0.0.0.0

#

return

<R5>display current-configuration

[V200R007C00SPC600]

#

 sysname R5

#

interface Serial1/0/0

 link-protocol ppp

 ip address 10.0.35.5 255.255.255.0

#

interface LoopBack0

 ip address 10.0.5.5 255.255.255.0

#

ospf 1 router-id 10.0.5.5

 import-route direct

 area 0.0.0.1

  network 10.0.35.5 0.0.0.0

#

return

Guess you like

Origin blog.csdn.net/weixin_57099902/article/details/131835168