HCIP-IERS deploys enterprise-level routing and switching network_OSPF protocol features and configuration_OSPF multi-area

Table of contents

Chapter 1 OSPF Protocol Features and Configuration

Experiment 1-2 OSPF multi-area

learning purpose

Topology

Scenes

Learning tasks

Step 1. Basic configuration and IP addressing

Step 2. Configure multi-area OSPF

Step 3. Configure route summarization between OSPF areas

Step 4. Modify the reference bandwidth value of OSPF

Step 5. Configure to summarize direct routes and import them into the OSPF area

Step 6. OSPF imports the default route

Step 7. Modify the priority of the two types of routes in OSPF

Additional Experiments: Think and Verify

final device configuration


 

Chapter 1 OSPF Protocol Features and Configuration

Experiment 1-2 OSPF Multi-Area

learning purpose

Master the method of specifying Router ID in OSPF configuration

Master the configuration method of multi-area OSPF

Master the configuration method of route summarization between OSPF areas

Master the configuration method of OSPF reference bandwidth

Master the configuration method of importing external routes by OSPF

Master the method of route summarization when OSPF imports external routes

Master the method of importing default routes to OSPF

Master the method of modifying the administrative distance of various routes in OSPF

Topology

Figure 1-2 OSPF multi-area

Scenes

You are the company's network administrator. Now there are five ARG3 routers in the company's network, among which R1, R2 and R4 are in the company's headquarters and interconnected through Ethernet. R3 and R5 are in the branch of the company. R3 is connected to R2 of the company headquarters through a dedicated line, and R5 and R3 are also connected through a dedicated line. Due to the large scale of the network, in order to control the flooding of LSAs, you have designed multi-area OSPF interconnection.

The Loopback0 interface and the interconnection interface of R2 and R3 belong to area 0; the network segment connecting R3 and R5, and the Loopback0/1/2 interface of R5 belong to area 1; the network segment connecting R1, R2 and R4, and the loopback0 interface of R1 and R4 belong to area 2.

At the same time, in order to specify the Router-ID of the device, you configure the device to use a fixed address as the Router ID.

In order to make routers more efficient in routing and forwarding, you configure automatic summarization at the border of the area.

Router R1 is connected to a network outside the company, and you configure routing information outside these OSPF areas to be imported into the OSPF area.

Router R4 is connected to the Internet. You need to configure a default route and import it into the OSPF area so that all routers in the OSPF area know how to access the Internet.

At the same time, internal routes and external routes are distinguished in OSPF routing information. You have modified the priority information of OSPF routing information to avoid potential risks.

The metric value of specific routing information in OSPF is obtained by accumulating the cost values ​​of all links passed through to reach the destination network. The link cost is obtained by the router comparing the interface bandwidth with the reference bandwidth. The reference bandwidth value is 100 Mbps, the actual interface bandwidth may be 1000 Mbps, and the metric values ​​are all integers, so the OSPF cost value of the Fast Ethernet interface and the Gigabit Ethernet interface are both 1. To be able to distinguish these links from each other, you define a reference bandwidth value of 10Gbps.

While configuring the device, some network failures occurred, which you troubleshoot by using the display and debug commands.

Learning tasks

Step 1. Basic configuration and IP addressing

Configure IP addresses and masks for all routers. When configuring, note that all loopback interface configuration masks are 24 bits, which is simulated as a separate network segment.

<R1>system-view

Enter system view, return user view with Ctrl+Z.

[R1]interface GigabitEthernet 0/0/0

[R1-GigabitEthernet0/0/0]ip address 10.0.124.1 24

[R1-GigabitEthernet0/0/0]quit

[R1]interface LoopBack 0

[R1-LoopBack0]ip address 10.0.1.1 24

[R1-LoopBack0]quit

[R1]interface LoopBack 1

[R1-LoopBack1]ip address 10.2.0.1 24

[R1-LoopBack1]quit

[R1]interface LoopBack 2

[R1-LoopBack2]ip address 10.2.1.1 24

[R1-LoopBack2]quit

<R2>system-view

Enter system view, return user view with Ctrl+Z.

[R2]interface GigabitEthernet 0/0/0

[R2-GigabitEthernet0/0/0]ip address 10.0.124.2 24

[R2-GigabitEthernet0/0/0]quit

[R2]interface Serial 2/0/0

[R2-Serial2/0/0]ip address 10.0.23.2 24

[R2-Serial2/0/0]quit

[R2]interface LoopBack 0

[R2-LoopBack0]ip address 10.0.2.2 24

[R2-LoopBack0]quit

<R3>system-view

Enter system view, return user view with Ctrl+Z.

[R3]interface Serial 2/0/0

[R3-Serial2/0/0]ip address 10.0.23.3 24

[R3-Serial2/0/0]quit

[R3]interface Serial 3/0/0

[R3-Serial3/0/0]ip address 10.0.35.3 24

[R3-Serial3/0/0]quit

[R3]interface LoopBack 0

[R3-LoopBack0]ip address 10.0.3.3 24

<R4>system-view

Enter system view, return user view with Ctrl+Z.

[R4]interface GigabitEthernet 0/0/0

[R4-GigabitEthernet0/0/0]ip address 10.0.124.4 24

[R4-GigabitEthernet0/0/0]quit

[R4]interface LoopBack 0

[R4-LoopBack0]ip address 10.0.4.4 24

[R4-LoopBack0]quit

<R5>system-view

Enter system view, return user view with Ctrl+Z.

[R5]interface Serial 1/0/0

[R5-Serial1/0/0]ip address 10.0.35.5 24

[R5-Serial1/0/0]quit

[R5]interface LoopBack 0

[R5-LoopBack0]ip address 10.0.5.5 24

[R5-LoopBack0]quit

[R5]interface LoopBack 1

[R5-LoopBack1]ip address 10.1.0.1 24
[R5-LoopBack1]quit

[R5]interface LoopBack 2

[R5-LoopBack2]ip address 10.1.1.1 24

[R5-LoopBack2]quit

After the configuration is complete, test the connectivity of the direct link.

[R2]ping -c 1 10.0.124.1

  PING 10.0.124.1: 56  data bytes, press CTRL_C to break

    Reply from 10.0.124.1: bytes=56 Sequence=1 ttl=255 time=5 ms

  --- 10.0.124.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 5/5/5 ms

[R2]ping -c 1 10.0.124.4

  PING 10.0.124.4: 56  data bytes, press CTRL_C to break

    Reply from 10.0.124.4: bytes=56 Sequence=1 ttl=255 time=14 ms

  --- 10.0.124.4 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 14/14/14 ms

[R2]ping -c 1 10.0.23.3

  PING 10.0.23.3: 56  data bytes, press CTRL_C to break

    Reply from 10.0.23.3: bytes=56 Sequence=1 ttl=255 time=41 ms

  --- 10.0.23.3 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 41/41/41 ms

[R3]ping -c 1 10.0.35.5

  PING 10.0.35.5: 56  data bytes, press CTRL_C to break

    Reply from 10.0.35.5: bytes=56 Sequence=1 ttl=255 time=38 ms

  --- 10.0.35.5 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 38/38/38 ms

Step 2. Configure multi-area OSPF

To ensure the stability of the OSPF Router ID, we usually manually specify the Router ID of the router. There are two methods to manually specify the Router ID of a router running OSPF. The first method is to use the router id command in the system view .

[R1]router id 10.0.1.1

The second way is to add the parameter router-id when starting the OSPF process .

[R1]ospf 1 router-id 10.0.1.1

When these two commands are configured on the router at the same time, the router will finally select the value configured in the second way as the Router ID. If multiple OSPF processes need to be started on a router, and the Router ID of each OSPF process needs to be different, we can only use the second method to specify the Router ID.

Configure Loopback 0 interface and GigabitEthernet 0/0/0 on R1 to belong to area 2. Here we change the OSPF network type of the loopback interfaces in all OSPF areas to Broadcast so that OSPF can publish the real mask information of the loopback interfaces.

[R1]ospf 1 router-id 10.0.1.1

[R1-ospf-1]area 2

[R1-ospf-1-area-0.0.0.2]network 10.0.124.1 0.0.0.0

[R1-ospf-1-area-0.0.0.2]network 10.0.1.1 0.0.0.0

[R1-ospf-1-area-0.0.0.2]quit

[R1-ospf-1]quit

[R1]interface LoopBack 0

[R1-LoopBack0]ospf network-type broadcast

[R1-LoopBack0]quit

Configure Loopback 0 and Serial 2/0/0 interfaces on R2 to belong to area 0, and GigabitEthernet 0/0/0 to belong to area 2.

[R2]ospf 1 router-id 10.0.2.2

[R2-ospf-1]area 0

[R2-ospf-1-area-0.0.0.0]network 10.0.23.2 0.0.0.0

[R2-ospf-1-area-0.0.0.0]network 10.0.2.2 0.0.0.0

[R2-ospf-1-area-0.0.0.0]quit

[R2-ospf-1]area 2

[R2-ospf-1-area-0.0.0.2]network 10.0.124.2 0.0.0.0

[R2-ospf-1-area-0.0.0.2]quit

[R2-ospf-1]quit

[R2]interface LoopBack 0

[R2-LoopBack0]ospf network-type broadcast

[R2-LoopBack0]quit

On R3, configure Loopback 0 and Serial 2/0/0 to belong to area 0, and Serial 3/0/0 to belong to area 1.

[R3]ospf 1 router-id 10.0.3.3

[R3-ospf-1]area 0

[R3-ospf-1-area-0.0.0.0]network 10.0.3.3 0.0.0.0

[R3-ospf-1-area-0.0.0.0]network 10.0.23.3 0.0.0.0

[R3-ospf-1-area-0.0.0.0]quit

[R3-ospf-1]area 1

[R3-ospf-1-area-0.0.0.1]network 10.0.35.3 0.0.0.0

[R3-ospf-1-area-0.0.0.1]quit

[R3-ospf-1]quit

[R3]interface LoopBack 0

[R3-LoopBack0]ospf network-type broadcast

[R3-LoopBack0]quit

Configure Loopback 0 and GigabitEthernet 0/0/0 on R4 to belong to area 2.

[R4]ospf 1 router-id 10.0.4.4

[R4-ospf-1]area 2

[R4-ospf-1-area-0.0.0.2]network 10.0.4.4 0.0.0.0

[R4-ospf-1-area-0.0.0.2]network 10.0.124.4 0.0.0.0

[R4-ospf-1-area-0.0.0.2]quit

[R4-ospf-1]quit

[R4]interface LoopBack 0

[R4-LoopBack0]ospf network-type broadcast

[R4-LoopBack0]quit

Configure all loopback interfaces and Serial 1/0/0 on R5 to belong to area 1.

[R5]ospf 1 router-id 10.0.5.5

[R5-ospf-1]area 1

[R5-ospf-1-area-0.0.0.1]network 10.0.5.5 0.0.0.0

[R5-ospf-1-area-0.0.0.1]network 10.1.0.1 0.0.0.0

[R5-ospf-1-area-0.0.0.1]network 10.1.1.1 0.0.0.0

[R5-ospf-1-area-0.0.0.1]network 10.0.35.5 0.0.0.0

[R5-ospf-1-area-0.0.0.1]quit

[R5-ospf-1]quit

[R5]interface LoopBack 0

[R5-LoopBack0]ospf network-type broadcast

[R5-LoopBack0]quit

[R5]interface LoopBack 1

[R5-LoopBack1]ospf network-type broadcast

[R5-LoopBack1]quit

[R5]interface LoopBack 2

[R5-LoopBack2]ospf network-type broadcast

[R5-LoopBack2]quit

After the configuration is complete, check the routing table on R1.

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

---------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 24       Routes : 24       

Destination/Mask    Proto  Pre  Cost    Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0 D   10.0.1.1        LoopBack0

       10.0.1.1/32 Direct  0    0 D   127.0.0.1       LoopBack0

     10.0.1.255/32 Direct  0    0 D   127.0.0.1       LoopBack0

       10.0.2.0/24 OSPF  10   1 D   10.0.124.2    GigabitEthernet0/0/0

       10.0.3.0/24 OSPF  10   1563 D   10.0.124.2    GigabitEthernet0/0/0

       10.0.4.0/24 OSPF  10   1 D   10.0.124.4    GigabitEthernet0/0/0

       10.0.5.0/24 OSPF  10   3125 D   10.0.124.2    GigabitEthernet0/0/0

      10.0.23.0/24 OSPF  10   1563 D   10.0.124.2    GigabitEthernet0/0/0

      10.0.35.0/24 OSPF  10   3125 D   10.0.124.2    GigabitEthernet0/0/0

     10.0.124.0/24 Direct  0    0 D   10.0.124.1    GigabitEthernet0/0/0

     10.0.124.1/32 Direct  0    0 D   127.0.0.1     GigabitEthernet0/0/0

   10.0.124.255/32 Direct  0    0 D   127.0.0.1     GigabitEthernet0/0/0

       10.1.0.0/24 OSPF  10   3125 D   10.0.124.2    GigabitEthernet0/0/0

       10.1.1.0/24 OSPF  10   3125 D   10.0.124.2    GigabitEthernet0/0/0

     10.2.0.0/24 Direct  0    0 D   10.2.0.1 LoopBack1

     10.2.0.1/32 Direct  0    0 D   127.0.0.1 LoopBack1

     10.2.0.255/32 Direct  0    0 D   127.0.0.1 LoopBack1

       10.2.1.0/24 Direct  0    0 D   10.2.1.1 LoopBack2

       10.2.1.1/32 Direct  0    0 D   127.0.0.1 LoopBack2

     10.2.1.255/32 Direct  0    0 D   127.0.0.1 LoopBack2

      127.0.0.0/8 Direct 0 0 D 127.0.0.1 InLoopBack0

      127.0.0.1/32 Direct 0 0 D 127.0.0.1 InLoopBack0

127.255.255.255/32Direct 0 0 D 127.0.0.1 InLoopBack0

255.255.255.255/32Direct 0 0 D 127.0.0.1 InLoopBack0

This router already has all routing entries on the entire network.

Test the connectivity to the loopback interface of other routers on R1.

[R1]ping -c 1 10.0.2.2

  PING 10.0.2.2: 56  data bytes, press CTRL_C to break

    Reply from 10.0.2.2: bytes=56 Sequence=1 ttl=255 time=3 ms

  --- 10.0.2.2 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 3/3/3 ms

[R1]ping -c 1 10.0.5.5

  PING 10.0.5.5: 56  data bytes, press CTRL_C to break

    Reply from 10.0.5.5: bytes=56 Sequence=1 ttl=253 time=88 ms

  --- 10.0.5.5 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 88/88/88 ms

[R1]ping -c 1 10.0.4.4

  PING 10.0.4.4: 56  data bytes, press CTRL_C to break

    Reply from 10.0.4.4: bytes=56 Sequence=1 ttl=255 time=3 ms

  --- 10.0.4.4 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 3/3/3 ms

We use the display ospf brief command to check the basic OSPF information running on the router on R2.

[R2]display ospf brief

         OSPF Process 1 with Router ID 10.0.2.2

                 OSPF Protocol Information

 RouterID: 10.0.2.2         Border Router:  AREA 

 Multi-VPN-Instance is not enabled

 Global DS-TE Mode: Non-Standard IETF Mode

 Graceful-restart capability: disabled

 Helper support capability  : not configured

 Spf-schedule-interval: max 10000ms, start 500ms, hold 1000ms

 Default ASE parameters: Metric: 1 Tag: 1 Type: 2

 Route Preference: 10

 ASE Route Preference: 150

 SPF Computation Count: 19    

 RFC 1583 Compatible

 Retransmission limitation is disabled

 Area Count: 2   Nssa Area Count: 0

 ExChange/Loading Neighbors: 0

Area: 0.0.0.0          (MPLS TE not enabled)

 Authtype: None   Area flag: Normal

 SPF scheduled Count: 18    

 ExChange/Loading Neighbors: 0

 Router ID conflict state: Normal

 Area interface up count: 2

 Interface: 10.0.2.2 (LoopBack0)

 Cost: 0       State: DR        Type: Broadcast    MTU: 1500  

 Priority: 1

 Designated Router: 10.0.2.2

 Backup Designated Router: 0.0.0.0

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

 Interface: 10.0.23.2 (Serial2/0/0) --> 10.0.23.3

 Cost: 1562    State: P-2-P     Type: P2P       MTU: 1500  

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

Area: 0.0.0.2          (MPLS TE not enabled)

 Authtype: None   Area flag: Normal

 SPF scheduled Count: 16    

 ExChange/Loading Neighbors: 0

 Router ID conflict state: Normal

 Area interface up count: 1

 Interface: 10.0.124.2 (GigabitEthernet0/0/0)

 Cost: 1       State: BDR       Type: Broadcast    MTU: 1500  

 Priority: 1

 Designated Router: 10.0.124.1

 Backup Designated Router: 10.0.124.2

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

The first line Border Router: AREA indicates that the router is an ABR; if the router is an intra-area router, the value is empty; if the router is an ASBR, the value is AS.

The router has three interfaces participating in the OSPF operation. We have manually changed the network type of the Loopback 0 interface to Broadcast. The encapsulation type of Serial2/0/0 is PPP, so the default network type is point-to-point. In addition, GigabitEthernet 0/0/0 is connected to area 2, which is a broadcast network.

We run the display ospf peer brief command on R2 to view the establishment of the OSPF neighbor relationship of the router. It can be seen that in area 0, R2 has a neighbor 10.0.3.3, and in area 2, R2 has two neighbors: 10.0.1.1 and 10.0.4.4, and R2 forms an adjacency relationship (Full) with them.

[R2]display ospf peer brief

         OSPF Process 1 with Router ID 10.0.2.2

                  Peer Statistic Information

 ----------------------------------------------------------------------------

 Area Id          Interface                        Neighbor id      State    

 0.0.0.0          Serial2/0/0 10.0.3.3         Full        

 0.0.0.2          GigabitEthernet0/0/0 10.0.1.1         Full        

 0.0.0.2          GigabitEthernet0/0/0 10.0.4.4         Full        

 ----------------------------------------------------------------------------

We run the display ospf lsdb command on R2 to check the OSPF database information of the router. We can find that since R2 is an ABR, two LSDBs are maintained on the router, which are used to describe the routes of area 0 and area 2 respectively.

[R2]display ospf lsdb

         OSPF Process 1 with Router ID 10.0.2.2

                 Link State Database

                         Area: 0.0.0.0

 Type      LinkState ID    AdvRouter          Age  Len   Sequence   Metric

 Router 10.0.3.3        10.0.3.3           788  60    80000008       0

 Router 10.0.2.2        10.0.2.2           869  60    80000008       0

 Sum-Net 10.0.35.0       10.0.3.3           846  28    80000002    1562

 Sum-Net 10.0.124.0      10.0.2.2          1259  28    80000002       1

Sum-Net     10.0.1.0        10.0.2.2           143  28    80000001       1

Sum-Net 10.1.1.0        10.0.3.3          1565  28    80000001    1562

 Sum-Net 10.0.5.0        10.0.3.3          1594  28    80000001    1562

 Sum-Net 10.1.0.0        10.0.3.3          1584  28    80000001    1562

 Sum-Net 10.0.4.0        10.0.2.2           538  28    80000002       1

                         Area: 0.0.0.2

 Type      LinkState ID    AdvRouter          Age  Len   Sequence   Metric

 Router 10.0.4.4        10.0.4.4           504  48    80000008       1

 Router 10.0.2.2        10.0.2.2           558  36    80000006       1

 Router 10.0.1.1        10.0.1.1           568  60    80000011       1

 Network 10.0.124.1      10.0.1.1           559  36    80000005       0

 Sum-Net 10.0.35.0       10.0.2.2           846  28    80000002    3124

 Sum-Net 10.0.3.0        10.0.2.2           830  28    80000002    1562

 Sum-Net 10.0.2.0        10.0.2.2          1249  28    80000002       0

 Sum-Net 10.1.1.0        10.0.2.2          1565  28    80000001    3124

 Sum-Net 10.0.5.0        10.0.2.2          1595  28    80000001    3124

 Sum-Net 10.1.0.0        10.0.2.2          1584  28    80000001    3124

 Sum-Net 10.0.23.0       10.0.2.2          1261  28    80000002    1562

Step 3. Configure route summarization between OSPF areas

First check the OSPF routing tables of R2 and R3.

[R2]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 7        Routes : 7        

OSPF routing table status : <Active>

         Destinations : 7        Routes : 7

Destination/Mask    Proto  Pre  Cost   Flags NextHop         Interface

       10.0.1.0/24  OSPF    10   1 D   10.0.124.1    GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    10   1562 D   10.0.23.3     Serial2/0/0

       10.0.4.0/24  OSPF    10   1 D   10.0.124.4    GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    10   3124 D   10.0.23.3       Serial2/0/0

      10.0.35.0/24  OSPF    10   3124 D   10.0.23.3       Serial2/0/0

       10.1.0.0/24  OSPF    10   3124 D   10.0.23.3       Serial2/0/0

       10.1.1.0/24  OSPF    10   3124 D   10.0.23.3       Serial2/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

[R3]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 7        Routes : 7        

OSPF routing table status : <Active>

         Destinations : 7        Routes : 7

Destination/Mask   Proto   Pre  Cost      Flags NextHop         Interface

       10.0.1.0/24 OSPF    10   1563        D   10.0.23.2       Serial2/0/0

       10.0.2.0/24 OSPF    10   1562        D   10.0.23.2       Serial2/0/0

       10.0.4.0/24 OSPF    10   1563        D   10.0.23.2       Serial2/0/0

       10.0.5.0/24 OSPF    10   1562        D   10.0.35.5       Serial3/0/0

     10.0.124.0/24 OSPF    10   1563        D   10.0.23.2       Serial2/0/0

       10.1.0.0/24 OSPF    10   1562        D   10.0.35.5       Serial3/0/0

       10.1.1.0/24 OSPF    10   1562        D   10.0.35.5       Serial3/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

Both routing information of 10.1.0.0/24 and 10.1.1.0/24 appear as detailed entries.

Such routing information can be summarized and then sent to other areas. On the one hand, it reduces the routing table entries in other areas, and on the other hand, it can also reduce the occurrence of route flapping. We can use the abr-summary command on R3 to summarize and send the network segments of the Loopback1 and Loopback2 interfaces of R5.

[R3]ospf 1

[R3-ospf-1]area 1

[R3-ospf-1-area-0.0.0.1]abr-summary 10.1.0.0 255.255.254.0

[R3-ospf-1-area-0.0.0.1]quit

[R3-ospf-1]quit

After the configuration is complete, check the summary routing information on R3 and R2 respectively.

[R3]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 7        Routes : 7        

OSPF routing table status : <Active>

         Destinations : 7        Routes : 7

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       10.0.1.0/24 OSPF    10   1563        D   10.0.23.2       Serial2/0/0

       10.0.2.0/24 OSPF    10   1562        D   10.0.23.2       Serial2/0/0

       10.0.4.0/24 OSPF    10   1563        D   10.0.23.2       Serial2/0/0

       10.0.5.0/24 OSPF    10   1562        D   10.0.35.5       Serial3/0/0

     10.0.124.0/24 OSPF    10   1563        D   10.0.23.2       Serial2/0/0

       10.1.0.0/24 OSPF    10   1562        D   10.0.35.5       Serial3/0/0

       10.1.1.0/24 OSPF    10   1562        D   10.0.35.5       Serial3/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

[R2]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 6        Routes : 6        

OSPF routing table status : <Active>

         Destinations : 6        Routes : 6

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       10.0.1.0/24  OSPF    10   1 D   10.0.124.1  GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    10   1562 D   10.0.23.3       Serial2/0/0

       10.0.4.0/24  OSPF    10   1 D   10.0.124.4      GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    10   3124 D   10.0.23.3       Serial2/0/0

      10.0.35.0/24  OSPF    10   3124 D   10.0.23.3       Serial2/0/0

       10.1.0.0/23  OSPF    10   3124 D   10.0.23.3       Serial2/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

From the output, we can see that in the routing table of R3, these two routes still appear as detailed routes, but on R2, only the summary route 10.1.0.0/23 exists.

After the configuration is complete, test the connectivity between other routers and networks 10.1.0.0/24 and 10.1.1.0/24.

[R1]ping -c 1 10.1.0.1

  PING 10.1.0.1: 56  data bytes, press CTRL_C to break

    Reply from 10.1.0.1: bytes=56 Sequence=1 ttl=253 time=66 ms

  --- 10.1.0.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 66/66/66 ms

[R1]ping -c 1 10.1.1.1

  PING 10.1.1.1: 56  data bytes, press CTRL_C to break

    Reply from 10.1.1.1: bytes=56 Sequence=1 ttl=253 time=66 ms

  --- 10.1.1.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 66/66/66 ms

[R2]ping -c 1 10.1.0.1

  PING 10.1.0.1: 56  data bytes, press CTRL_C to break

    Reply from 10.1.0.1: bytes=56 Sequence=1 ttl=254 time=69 ms

  --- 10.1.0.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 69/69/69 ms

[R3]ping -c 1 10.1.0.1

  PING 10.1.0.1: 56  data bytes, press CTRL_C to break

    Reply from 10.1.0.1: bytes=56 Sequence=1 ttl=255 time=29 ms

  --- 10.1.0.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 29/29/29 ms

Step 4. Modify the reference bandwidth value of OSPF

In the actual network, we may use Gigabit or even 10 Gigabit Ethernet. However, because the default reference bandwidth value of OSPF is 100 Mbps, and the interface cost value is only an integer, OSPF cannot distinguish between 100M Ethernet and 1000M Ethernet in terms of bandwidth.

Change the reference bandwidth value of OSPF on R2 to 10 Gbps. Here, use the command bandwidth-reference to modify, and the unit of the corresponding bandwidth parameter value is Mbps.

[R2-ospf-1]bandwidth-reference 10000

Checking the OSPF neighbor relationship and routing information learning on R2, we can see that the Cost value in the routing table has changed.

[R2]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 7        Routes : 7        

OSPF routing table status : <Active>

         Destinations : 7        Routes : 7

Destination/Mask   Proto   Pre  Cost    Flags NextHop         Interface

       10.0.3.0/24  OSPF    10   65535 D   10.0.23.3       Serial2/0/0

       10.0.4.0/24  OSPF    10   10 D   10.0.124.4      GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    10   67097 D   10.0.23.3       Serial2/0/0

      10.0.35.0/24  OSPF    10   67097 D   10.0.23.3       Serial2/0/0

       10.1.0.0/23  OSPF    10   67097 D   10.0.23.3       Serial2/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

In multiple areas where OSPF runs, the reference bandwidth of OSPF must be the same; otherwise, OSPF cannot work normally. Modify the OSPF reference bandwidth value of all routers to 10Gbps.

[R1]ospf 1

[R1-ospf-1]bandwidth-reference 10000

[R1-ospf-1]quit

[R2]ospf 1

[R2-ospf-1]bandwidth-reference 10000

[R2-ospf-1]quit

[R3]ospf 1

[R3-ospf-1]bandwidth-reference 10000

[R3-ospf-1]quit

[R4]ospf 1

[R4-ospf-1]bandwidth-reference 10000

[R4-ospf-1]quit

[R5]ospf 1

[R5-ospf-1]bandwidth-reference 10000

[R5-ospf-1]quit

Check the neighbor list and routing table on R2 to see whether the OSPF neighbor relationship and routing information are normal.

[R2]display ospf peer brief

         OSPF Process 1 with Router ID 10.0.2.2

                  Peer Statistic Information

 ----------------------------------------------------------------------------

 Area Id          Interface                        Neighbor id      State    

 0.0.0.0          Serial2/0/0 10.0.3.3         Full        

 0.0.0.2          GigabitEthernet0/0/0              10.0.1.1         Full        

 0.0.0.2          GigabitEthernet0/0/0              10.0.4.4         Full        

 ----------------------------------------------------------------------------

[R2]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 6        Routes : 6        

OSPF routing table status : <Active>

         Destinations : 6        Routes : 6

Destination/Mask   Proto   Pre  Cost   Flags NextHop         Interface

       10.0.1.0/24  OSPF    10   100 D   10.0.124.1      GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    10   65535 D   10.0.23.3       Serial2/0/0

       10.0.4.0/24  OSPF    10   100 D   10.0.124.4      GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

      10.0.35.0/24  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

       10.1.0.0/23  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

As shown above, the routing information is OK. In addition, the connectivity of the network can be tested.

Step 5. Configure to summarize direct routes and import them into the OSPF area

Loopback1 and Loopback2 interfaces on R1 do not belong to the OSPF area. Import the two direct routes into the OSPF area, and perform route summary on R1.

[R1]ospf 1

[R1-ospf-1]import-route direct

[R1-ospf-1]asbr-summary 10.2.0.0 255.255.254.0

[R1-ospf-1]quit

Check the external routing information on R1.

[R1]display ospf lsdb ase 10.2.0.0

         OSPF Process 1 with Router ID 10.0.1.1

                 Link State Database

  Type : External

  Ls id : 10.2.0.0

  Adv rtr : 10.0.1.1  

  Ls age : 293

  Len : 36

  Options :  E  

  seq# : 80000001

  chksum : 0x2b6

  Net mask : 255.255.254.0 

  TOS 0  Metric: 2

  E type : 2

  Forwarding Address : 0.0.0.0

  Tag : 1

  Priority : Low

R1 advertises the network segment 10.2.0.0 to other routers through a Type 5 LSA, and the subnet mask is 255.255.254.0.

View summarized routes on other routers and test network connectivity.

[R2]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 7        Routes : 7        

OSPF routing table status : <Active>

         Destinations : 7        Routes : 7

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

       10.0.1.0/24  O_ASE   150  100 D   10.0.124.1      GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    10   65535 D   10.0.23.3       Serial2/0/0

       10.0.4.0/24  OSPF    10   100 D   10.0.124.4      GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

      10.0.35.0/24  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

       10.1.0.0/23  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

       10.2.0.0/23  O_ASE   150  2 D   10.0.124.1      GigabitEthernet0/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

[R2]ping -c 1 10.2.0.1

  PING 10.2.0.1: 56  data bytes, press CTRL_C to break

    Reply from 10.2.0.1: bytes=56 Sequence=1 ttl=255 time=2 ms

  --- 10.2.0.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 2/2/2 ms

[R2]ping -c 1 10.2.1.1

  PING 10.2.1.1: 56  data bytes, press CTRL_C to break

    Reply from 10.2.1.1: bytes=56 Sequence=1 ttl=255 time=2 ms

  --- 10.2.1.1 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 2/2/2 ms

You can see a summary route with a mask of 23 bits on R2.

Delete the Loopback 2 interface of R1, and check the changes of routing entries on R2. We can see that when the Loopback 2 interface no longer exists, the summary route still exists.

[R1]undo interface LoopBack 2

[R2]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 7        Routes : 7        

OSPF routing table status : <Active>

         Destinations : 7        Routes : 7

Destination/Mask   Proto   Pre  Cost    Flags NextHop         Interface

       10.0.1.0/24  ospf    150  100 D   10.0.124.1      GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    10   65535 D   10.0.23.3       Serial2/0/0

       10.0.4.0/24  OSPF    10   100 D   10.0.124.4      GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

      10.0.35.0/24  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

       10.1.0.0/23  OSPF    10   131070 D   10.0.23.3       Serial2/0/0

       10.2.0.0/23  O_ASE   150   2 D   10.0.124.1      GigabitEthernet0/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

Send a Tracert packet to the 10.2.1.1 address on the R5 device.

<R5>tracert 10.2.1.1

 traceroute to  10.2.1.1(10.2.1.1), max hops: 30 ,packet length: 40,press CTRL_C to break

 1 10.0.35.3 62 ms  28 ms  27 ms

 2 10.0.23.2 54 ms  58 ms  57 ms

 3  *  *  *

...

We can see that although the Loopback 2 interface is deleted, the data packet arriving at the destination address is still forwarded by R2 and R3 until the data packet is discarded on R1.

Step 6. OSPF imports the default route

The Loopback0 interface of R4 is connected to the Internet. Configure a default route on R4, with the next hop pointing to Loopback0.

[R4]ip route-static 0.0.0.0 0.0.0.0 LoopBack 0

Import this default route to the OSPF area, define the type as 1, and define the cost as 10, and define it as a permanent import.

[R4]ospf 1

[R4-ospf-1]default-route-advertise always type 1

[R4-ospf-1]quit

Check the learning status of the default route on R2. We can see that R2 has learned a default route through the fifth type LSA, and the next hop is the interface address of R4.

[R2]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 8        Routes : 8        

OSPF routing table status : <Active>

         Destinations : 8        Routes : 8

Destination/Mask   Proto   Pre  Cost    Flags NextHop         Interface

        0.0.0.0/0   O_ASE   150 101 D   10.0.124.4      GigabitEthernet0/0/0

       10.0.1.0/24  ospf    10 100 D   10.0.124.1      GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    10 65535 D   10.0.23.3       Serial2/0/0

       10.0.4.0/24  OSPF    10 100 D   10.0.124.4      GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    10 131070 D   10.0.23.3       Serial2/0/0

      10.0.35.0/24  OSPF    10 131070 D   10.0.23.3       Serial2/0/0

       10.1.0.0/23  OSPF    10 131070 D   10.0.23.3       Serial2/0/0

       10.2.0.0/23  O_ASE   150  2 D   10.0.124.1      GigabitEthernet0/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

Finally, test the connectivity between the R5 router and 10.0.4.4.

[R5]ping -c 1 10.0.4.4

  PING 10.0.4.4: 56  data bytes, press CTRL_C to break

    Reply from 10.0.4.4: bytes=56 Sequence=1 ttl=253 time=78 ms

  --- 10.0.4.4 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 78/78/78 ms

Step 7. Modify the priority of the two types of routes in OSPF

Check the routing table of R1, and pay attention to the priority information of different types of OSPF routes.

[R1]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 8        Routes : 8        

OSPF routing table status : <Active>

         Destinations : 8        Routes : 8

Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface

        0.0.0.0/0   O_ASE   150  101 D   10.0.124.4    GigabitEthernet0/0/0

       10.0.2.0/24  OSPF    10   100 D   10.0.124.2    GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    10   65635 D   10.0.124.2    GigabitEthernet0/0/0

       10.0.4.0/24  OSPF    10   100 D   10.0.124.4    GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    10   131170 D   10.0.124.2    GigabitEthernet0/0/0

      10.0.23.0/24  OSPF    10   65635 D   10.0.124.2    GigabitEthernet0/0/0

      10.0.35.0/24  OSPF    10   131170 D   10.0.124.2    GigabitEthernet0/0/0

       10.1.0.0/23  OSPF    10   131170 D   10.0.124.2    GigabitEthernet0/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

By default, the OSPF intra-area and inter-area routes have a priority of 10. OSPF external route with priority 150.

Change the priority of OSPF intra-area and inter-area routes on routers R1 and R4 to 20, and change the priority of OSPF external routes to 50.

[R1]ospf 1

[R1-ospf-1]preference 20

[R1-ospf-1]preference ase 50

[R1-ospf-1]quit

[R4]ospf 1

[R4-ospf-1]preference 20

[R4-ospf-1]preference ase 50

[R4-ospf-1]quit

Check the priorities of OSPF internal routes and external routes in the routing table to confirm that they have been modified successfully.

[R1]display ip routing-table protocol ospf

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Public routing table : OSPF

         Destinations : 8        Routes : 8        

OSPF routing table status : <Active>

         Destinations : 8        Routes : 8

Destination/Mask   Proto   Pre  Cost    Flags NextHop         Interface

        0.0.0.0/0   O_ASE   50   101 D   10.0.124.4    GigabitEthernet0/0/0

       10.0.2.0/24  OSPF    20   100 D   10.0.124.2    GigabitEthernet0/0/0

       10.0.3.0/24  OSPF    20   65545 D   10.0.124.2    GigabitEthernet0/0/0

       10.0.4.0/24  OSPF    20   100 D   10.0.124.4    GigabitEthernet0/0/0

       10.0.5.0/24  OSPF    20   131170 D   10.0.124.2    GigabitEthernet0/0/0

      10.0.23.0/24  OSPF    20   65635 D   10.0.124.2    GigabitEthernet0/0/0

      10.0.35.0/24  OSPF    20   131170 D   10.0.124.2    GigabitEthernet0/0/0

       10.1.0.0/23  OSPF    20   131170 D   10.0.124.2    GigabitEthernet0/0/0

OSPF routing table status : <Inactive>

         Destinations : 0        Routes : 0

Route priority is valid only locally and is used to measure the optimality of routes learned locally through multiple methods. Different routers in the local area can work fine if the priority information is different.

Additional Experiments : Think and Verify

Consider in step 6, what is the function of defining the permanent release of the default route? What are the pros and cons?

Route summarization is like a double-edged sword, which has advantages and disadvantages. Think and summarize the advantages and disadvantages of using route summarization, and analyze how to avoid these disadvantages.

final device configuration

<R1>display current-configuration

[V200R007C00SPC600]

#

 sysname R1

#

interface GigabitEthernet0/0/0

 ip address 10.0.124.1 255.255.255.0

#

interface LoopBack0

 ip address 10.0.1.1 255.255.255.0

 ospf network-type broadcast

#

interface LoopBack1

 ip address 10.2.0.1 255.255.255.0

#

ospf 1 router-id 10.0.1.1

 asbr-summary 10.2.0.0 255.255.254.0

 import-route direct

 preference 20

 preference ase 50

 bandwidth-reference 10000

 area 0.0.0.2

  network 10.0.1.1 0.0.0.0

  network 10.0.124.1 0.0.0.0

#

return

<R2>display current-configuration

[V200R007C00SPC600]

#

 sysname R2

#

interface Serial2/0/0

 link-protocol ppp

 ip address 10.0.23.2 255.255.255.0

#

interface GigabitEthernet0/0/0

 ip address 10.0.124.2 255.255.255.0

#

interface LoopBack0

 ip address 10.0.2.2 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.2.2

 bandwidth-reference 10000

 area 0.0.0.0

    network 10.0.2.2 0.0.0.0

network 10.0.23.2 0.0.0.0

area 0.0.0.2

  network 10.0.124.2 0.0.0.0

#

return

<R3>display current-configuration

[V200R007C00SPC600]

#

 sysname R3

#

interface Serial2/0/0

 link-protocol ppp

 ip address 10.0.23.3 255.255.255.0

#

interface Serial3/0/0

 link-protocol ppp

 ip address 10.0.35.3 255.255.255.0

#

interface LoopBack0

 ip address 10.0.3.3 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.3.3

 bandwidth-reference 10000

 area 0.0.0.0

  network 10.0.3.3 0.0.0.0

  network 10.0.23.3 0.0.0.0

 area 0.0.0.1

  abr-summary 10.1.0.0 255.255.254.0

  network 10.0.35.3 0.0.0.0

#

return

<R4>display current-configuration

[V200R007C00SPC600]

#

 sysname R4

#

interface GigabitEthernet0/0/0

 ip address 10.0.124.4 255.255.255.0

#

interface LoopBack0

 ip address 10.0.4.4 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.4.4

 default-route-advertise always type 1

 preference 20

 preference ase 50

 bandwidth-reference 10000

 area 0.0.0.2

  network 10.0.4.4 0.0.0.0

  network 10.0.124.4 0.0.0.0

#

 ip route-static 0.0.0.0 0.0.0.0 LoopBack0

#

return

<R5>display current-configuration

[V200R007C00SPC600]

#

 sysname R5

#

interface Serial1/0/0

 link-protocol ppp

 ip address 10.0.35.5 255.255.255.0

#

interface LoopBack0

 ip address 10.0.5.5 255.255.255.0

 ospf network-type broadcast

#

interface LoopBack1

 ip address 10.1.0.1 255.255.255.0

 ospf network-type broadcast

#

interface LoopBack2

 ip address 10.1.1.1 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.5.5

 bandwidth-reference 10000

 area 0.0.0.1

  network 10.0.5.5 0.0.0.0

  network 10.1.0.1 0.0.0.0

  network 10.1.1.1 0.0.0.0

  network 10.0.35.5 0.0.0.0

#

return

Guess you like

Origin blog.csdn.net/weixin_57099902/article/details/131833678