Integral Derivation with Variable Limits

Prerequisite knowledge: Newton-Leibniz formula

introduce

Shaped like

G ( x ) = ∫ v ( x ) u ( x ) f ( t ) d t G(x)=\int_{v(x)}^{u(x)}f(t)dt G(x)=v(x)u(x)f(t)dt

The integral of is called variable limit integral.

According to the Newton-Leibniz formula ,

G ′ ( x ) = F ′ ( u ( x ) ) u ′ ( x ) − F ′ ( v ( x ) ) v ′ ( x ) = f ( u ( x ) ) u ′ ( x ) − f ( v ( x ) ) v ′ ( x ) G'(x)=F'(u(x))u'(x)-F'(v(x))v'(x)=f(u(x))u'(x)-f(v(x))v'(x) G(x)=F(u(x))u(x)F(v(x))v(x)=f(u(x))u(x)f(v(x))v(x)

Then we can use this formula to find the derivative of the variable limit integral.


Example 1

F ( x ) = ∫ 1 x 2 e t d t F(x)=\int_1^{x^2}e^tdt F(x)=1x2et dt, findF ′ ( x ) F'(x)F(x)

解:
F ′ ( x ) = e x 2 ⋅ 2 x − e 1 ⋅ 0 = 2 x e x 2 \qquad F'(x)=e^{x^2}\cdot 2x-e^1\cdot 0=2xe^{x^2} F(x)=ex22x _e10=2xex2


Example 2

计算 lim ⁡ x → 0 ∫ ∫ 0 x sin ⁡ t 2 d t x 2 ln ⁡ ( 1 + x ) \lim\limits_{x\to 0}\int\dfrac{\int_0^x\sin t^2dt}{x^2\ln(1+x)} x0limx2ln(1+x)0xsint2 dt

Solution:
\qquadReplaced by infinitesimal , the original formula = lim ⁡ x → 0 ∫ ∫ 0 x sin ⁡ t 2 dtx 2 ⋅ x =\lim\limits_{x\to 0}\int\dfrac{\int_0^x\sin t^2dt }{x^2\cdot x}=x0limx2x0xsint2 dt

\qquad According to L'Hopital's rule , the original formula = lim ⁡ x → 0 sin ⁡ x 2 3 x 2 = lim ⁡ x → 0 x 2 3 x 2 = 1 3 =\lim\limits_{x\to 0}\dfrac{\ sin x^2}{3x^2}=\lim\limits_{x\to 0}\dfrac{x^2}{3x^2}=\dfrac 13=x0lim3x _2sinx2=x0lim3x _2x2=31

Guess you like

Origin blog.csdn.net/tanjunming2020/article/details/131260878