RKD Knowledge Distillation Practice: Using CoatNet to Distill ResNet

Summary

Knowledge Distillation, referred to as KD, extracts the knowledge ("Knowledge") and distillation ("Distill") contained in the trained model into another model. Hinton first proposed the concept of knowledge distillation (dark knowledge extraction) in "Distilling the Knowledge in a Neural Network", by introducing a soft target (Soft-target) related to the teacher network (Teacher network: complex, but superior prediction accuracy) as Part of the total loss is to induce the training of the student network (Student network: streamlined, low complexity, more suitable for reasoning deployment) to achieve knowledge transfer. This paper uses RKD to realize the distillation of the model. Unlike the previous article (https://blog.csdn.net/hhhhhhhhhhwwwwwwwww/article/details/127787791?spm=1001.2014.3001.5501), the distillation method is different. RKD is to distill the characteristics of the flattened layer, and the loss of the distillation is Divided into the second-order distance loss Distance-wise Loss and the third-order angle loss Angle-wise Loss.
insert image description here

final conclusion

Let's talk about the conclusion first! The Teacher network uses coatnet_2, and the Student network uses ResNet18. as follows

network epochs ACC
coatnet_2 100 92%
ResNet18 100 86%
ResNet18 +RKD 100 90%

Under the same conditions, after adding knowledge distillation, the ACC of ResNet18 has increased by 4 points, which is still very high. As shown below:
insert image description here

data preparation

The data uses my previous data set in the image classification task - the plant seedling data set, and first converts the data set into a training set and a verification set. Execution code:

import glob
import os
import shutil

image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)

from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

teacher network

The teacher network uses coatnet_2, which is a relatively large network, and the size of the model is 200M. Training for 100 epochs, the best model is around 92%. RKD distillation is the distillation of the flattened layer, so we need to make some modifications to the CoatNet network, as follows:

在这里插入代码片
class CoAtNet(nn.Module):
    def __init__(self, image_size, in_channels, num_blocks, channels, num_classes=1000, block_types=['C', 'C', 'T', 'T']):
        super().__init__()
        ih, iw = image_size
        block = {
    
    'C': MBConv, 'T': Transformer}

        self.s0 = self._make_layer(
            conv_3x3_bn, in_channels, channels[0], num_blocks[0], (ih // 2, iw // 2))
        self.s1 = self._make_layer(
            block[block_types[0]], channels[0], channels[1], num_blocks[1], (ih // 4, iw // 4))
        self.s2 = self._make_layer(
            block[block_types[1]], channels[1], channels[2], num_blocks[2], (ih // 8, iw // 8))
        self.s3 = self._make_layer(
            block[block_types[2]], channels[2], channels[3], num_blocks[3], (ih // 16, iw // 16))
        self.s4 = self._make_layer(
            block[block_types[3]], channels[3], channels[4], num_blocks[4], (ih // 32, iw // 32))

        self.pool = nn.AvgPool2d(ih // 32, 1)
        self.fc = nn.Linear(channels[-1], num_classes, bias=False)

    def forward(self, x):
        x = self.s0(x)
        x = self.s1(x)
        x = self.s2(x)
        x = self.s3(x)
        x = self.s4(x)
        fea = self.pool(x).view(-1, x.shape[1])
        x = self.fc(fea)
        return fea, x

Modify the return result of the model and add the feature of returning the flattening layer, so that the Model returns two values, one is fea and the other is x. Next, start writing the train method of the teacher model.

step

Create a new teacher_train.py and insert the code:

Import required libraries

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from model.coatnet import coatnet_2

import json
import os

Define training and validation functions


def train(model, device, train_loader, optimizer, epoch):
    model.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = Variable(data).to(device), Variable(target).to(device)
        fea,output = model(data)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item()))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:{},loss:{}'.format(epoch, ave_loss))

Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            fea,output = model(data)
            loss = criterion(output, target)
            _, pred = torch.max(output.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        if acc > Best_ACC:
            torch.save(model, file_dir + '/' + 'best.pth')
            Best_ACC = acc
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))
        return acc

define global parameters

if __name__ == '__main__':
    # 创建保存模型的文件夹
    file_dir = 'CoatNet'
    if os.path.exists(file_dir):
        print('true')

        os.makedirs(file_dir, exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    modellr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 50
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Image Preprocessing and Enhancement

 # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
    ])


read data

Use pytorch to read data by default.

    # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

Set the model and Loss

   # 实例化模型并且移动到GPU
    criterion = nn.CrossEntropyLoss()

    model_ft = coatnet_2()
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 12)
    model_ft.to(DEVICE)
    # 选择简单暴力的Adam优化器,学习率调低
    optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
    cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)
    # 训练
    val_acc_list= {
    
    }
    for epoch in range(1, EPOCHS + 1):
        train(model_ft, DEVICE, train_loader, optimizer, epoch)
        cosine_schedule.step()
        acc=val(model_ft, DEVICE, test_loader)
        val_acc_list[epoch]=acc
        with open('result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(val_acc_list))
    torch.save(model_ft, 'CoatNet/model_final.pth')

After completing the above code, you can start training the Teacher network.

student network

The student network uses ResNet18, which is a relatively small network, and the size of the model is 40M. Training for 50 epochs, the best model is around 86%. Since RKD distills the flattening layer, ResNet also needs to be modified so that it can return the features of the flattening layer.

    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        fea = torch.flatten(x, 1)
        x = self.fc(fea)

        return fea,x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)

The return value is increased by fea, and then the flattened layer features of the Student model can be obtained. Next, start writing the Student training method.

step

Create a new student_train.py and insert the code:

Import required libraries

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from torchvision.models.resnet import resnet18

import json
import os

Define training and validation functions


def train(model, device, train_loader, optimizer, epoch):
    model.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target =data.to(device), target.to(device)
        fea,output = model(data)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item()))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:{},loss:{}'.format(epoch, ave_loss))

Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            fea,output = model(data)
            loss = criterion(output, target)
            _, pred = torch.max(output.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        if acc > Best_ACC:
            torch.save(model, file_dir + '/' + 'best.pth')
            Best_ACC = acc
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))
        return acc

define global parameters

if __name__ == '__main__':
    # 创建保存模型的文件夹
    file_dir = 'resnet'
    if os.path.exists(file_dir):
        print('true')

        os.makedirs(file_dir, exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    modellr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 100
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Image Preprocessing and Enhancement

 # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
    ])


read data

Use pytorch to read data by default.

    # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

Set the model and Loss

	# 实例化模型并且移动到GPU
    criterion = nn.CrossEntropyLoss()
    model_ft = resnet18()
    print(model_ft)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 12)
    model_ft.to(DEVICE)
    # 选择简单暴力的Adam优化器,学习率调低
    optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
    cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)
    # 训练
    val_acc_list= {
    
    }
    for epoch in range(1, EPOCHS + 1):
        train(model_ft, DEVICE, train_loader, optimizer, epoch)
        cosine_schedule.step()
        acc=val(model_ft, DEVICE, test_loader)
        val_acc_list[epoch]=acc
        with open('result_student.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(val_acc_list))
    torch.save(model_ft, 'resnet/model_final.pth')

After completing the above code, you can start training the Student network.

Distilled Student Network

The student network continues to use ResNet18, uses the Teacher network to distill the student network, trains 100 epochs, and the final ACC is 90%.

step

Create a new student_rkd_train.py and insert the code:

Import required libraries

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from torchvision.models.resnet import resnet18

import json
import os

Define the distillation script

Create a new rkd.py and insert the code:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F


'''
From https://github.com/lenscloth/RKD/blob/master/metric/loss.py
'''
class RKD(nn.Module):
	'''
	Relational Knowledge Distillation
	https://arxiv.org/pdf/1904.05068.pdf
	'''
	def __init__(self, w_dist, w_angle):
		super(RKD, self).__init__()

		self.w_dist  = w_dist
		self.w_angle = w_angle

	def forward(self, feat_s, feat_t):
		loss = self.w_dist * self.rkd_dist(feat_s, feat_t) + \
			   self.w_angle * self.rkd_angle(feat_s, feat_t)

		return loss

	def rkd_dist(self, feat_s, feat_t):
		feat_t_dist = self.pdist(feat_t, squared=False)
		mean_feat_t_dist = feat_t_dist[feat_t_dist>0].mean()
		feat_t_dist = feat_t_dist / mean_feat_t_dist

		feat_s_dist = self.pdist(feat_s, squared=False)
		mean_feat_s_dist = feat_s_dist[feat_s_dist>0].mean()
		feat_s_dist = feat_s_dist / mean_feat_s_dist

		loss = F.smooth_l1_loss(feat_s_dist, feat_t_dist)

		return loss

	def rkd_angle(self, feat_s, feat_t):
		# N x C --> N x N x C
		feat_t_vd = (feat_t.unsqueeze(0) - feat_t.unsqueeze(1))
		norm_feat_t_vd = F.normalize(feat_t_vd, p=2, dim=2)
		feat_t_angle = torch.bmm(norm_feat_t_vd, norm_feat_t_vd.transpose(1, 2)).view(-1)

		feat_s_vd = (feat_s.unsqueeze(0) - feat_s.unsqueeze(1))
		norm_feat_s_vd = F.normalize(feat_s_vd, p=2, dim=2)
		feat_s_angle = torch.bmm(norm_feat_s_vd, norm_feat_s_vd.transpose(1, 2)).view(-1)

		loss = F.smooth_l1_loss(feat_s_angle, feat_t_angle)

		return loss

	def pdist(self, feat, squared=False, eps=1e-12):
		feat_square = feat.pow(2).sum(dim=1)
		feat_prod   = torch.mm(feat, feat.t())
		feat_dist   = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps)

		if not squared:
			feat_dist = feat_dist.sqrt()
		feat_dist = feat_dist.clone()
		feat_dist[range(len(feat)), range(len(feat))] = 0
		return feat_dist

Define training and validation functions

# 定义训练过程
def train(s_net,t_net, device, criterionCls,criterionKD,train_loader, optimizer, epoch):
    s_net.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        fea_s,output = s_net(data)
        cls_loss = criterionCls(output, target)
        fea_t, teacher_output = t_net(data)  # 训练出教师的 teacher_output
        kd_loss = criterionKD(fea_s, fea_t.detach()) * lambda_kd
        loss = cls_loss + kd_loss
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item()))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:{},loss:{}'.format(epoch, ave_loss))

Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device,criterionCls, test_loader):
    global Best_ACC
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            _,output = model(data)
            loss = criterionCls(output, target)
            _, pred = torch.max(output.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        if acc > Best_ACC:
            torch.save(model, file_dir + '/' + 'best.pth')
            Best_ACC = acc
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))
        return acc

define global parameters

if __name__ == '__main__':
    # 创建保存模型的文件夹
    file_dir = 'resnet_rkd'
    if os.path.exists(file_dir):
        print('true')

        os.makedirs(file_dir, exist_ok=True)
    else:
        os.makedirs(file_dir)

   # 设置全局参数
    modellr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 100
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    w_dist=25
    w_angle=50
    lambda_kd=1.0

Image Preprocessing and Enhancement

 # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
    ])


read data

Use pytorch to read data by default.

    # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

Set the model and Loss

   # 实例化模型并且移动到GPU
	model_ft = resnet18()
    print(model_ft)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 12)
    model_ft.to(DEVICE)
    # 选择简单暴力的Adam优化器,学习率调低
    optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
    cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)
    teacher_model=torch.load('./CoatNet/best.pth')
    teacher_model.eval()
 	# 定义rkd loss和nn.CrossEntropyLoss()
    criterionKD = RKD(w_dist, w_angle)
    criterionCls = nn.CrossEntropyLoss()
    # 训练
    val_acc_list= {
    
    }
    for epoch in range(1, EPOCHS + 1):
        train(model_ft,teacher_model, DEVICE,criterionCls,criterionKD, train_loader, optimizer, epoch)
        cosine_schedule.step()
        acc=val(model_ft,DEVICE,criterionCls , test_loader)
        val_acc_list[epoch]=acc
        with open('result_rkd.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(val_acc_list))
    torch.save(model_ft, 'resnet_rkd/model_final.pth')

After completing the above code, you can start the distillation mode! ! !

Result comparison

Load the saved results, and then draw the acc curve. Then use matplotlib to display it, the code is as follows:

import numpy as np
from matplotlib import pyplot as plt
import json
teacher_file='result.json'
student_file='result_student.json'
student_kd_file='result_rkd.json'
def read_json(file):
    with open(file, 'r', encoding='utf8') as fp:
        json_data = json.load(fp)
        print(json_data)
    return json_data

teacher_data=read_json(teacher_file)
student_data=read_json(student_file)
student_kd_data=read_json(student_kd_file)


x =[int(x) for x in  list(dict(teacher_data).keys())]
print(x)

plt.plot(x, list(teacher_data.values()), label='teacher')
plt.plot(x,list(student_data.values()), label='student without RKD')
plt.plot(x, list(student_kd_data.values()), label='student with RKD')

plt.title('Test accuracy')
plt.legend()

plt.show()

insert image description here

Summarize

Knowledge distillation is a commonly used method for compressing and upgrading lightweight models. Today, a simple example explains how to use the Teacher network to perform RKD distillation on the Student network.
For the code and data sets used in this actual combat, see:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/87029904

Guess you like

Origin blog.csdn.net/m0_47867638/article/details/131180423