[Complex Function Notes] Fourier Transform and Laplace Transform

1. Definition of Fourier transform and Laplace transform

1. Fourier integral

Fourier Integral Theorem If f ( t ) f(t)f ( t ) at( − ∞ , + ∞ ) (-\infty,+\infty)(,+ ) satisfies the following conditions:
(1)f ( t ) f(t)f ( t ) satisfies the Dirichlet condition on any finite interval (continuous or only a limited number of discontinuous points of the first type; only a limited number of extreme points);
(2)f ( t ) f(t)f ( t ) in the infinite interval( − ∞ , + ∞ ) (-\infty,+\infty)(,+ ) is absolutely integrable (ie the integral∫ − ∞ + ∞ ∣ f ( t ) ∣ dt \int_{-\infty}^{+\infty}|f(t)|\mathrm{d}t+f ( t ) d t equation), and if f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − i ω τ d τ ] ei ω td ω f( t)=\frac{1}{2\pi }\int_{-\infty}^{+\infty}\left[\int_{-\infty}^{+\infty} f(\tau)e^{ -i\omega\tau}\mathrm{d}\tau\right]e^{i\omega t}\mathrm{d}\omegaf(t)=2 p.m1+[+f ( τ ) eτ dτ]et dωf ( t ) f(t)on the leftf ( t ) should be f ( t + 0 ) + f ( t − 0 ) 2 \frac{f(t+0)+f(t-0)}{2}at its discontinuity point2f(t+0)+f(t0)(left and right extreme mean values) instead.

2. Fourier transform

Fourier transform : if f ( t ) f(t)f ( t ) at( − ∞ , + ∞ ) (-\infty,+\infty)(,+ ) satisfy the conditions of Fourier integral, then the function F ( ω ) = F [ f ( t ) ] = ∫ − ∞ + ∞ f ( t ) e − i ω tdt F(\omega)=\mathscr {F}[f(t)]=\int_{-\infty}^{+\infty}f(t)e^{-i\omega t}\mathrm{d}tF ( ω )=F[f(t)]=+f(t)et dtisf ( t ) f(t)The Fourier transform of f ( t ) ; and the function f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ + ∞ F ( ω ) ei ω td ω f(t)=\ mathscr{F}^{-1}[F(\omega)]=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{i\ omega t}\mathrm{d}\omegaf(t)=F1 [F(ω)]=2 p.m1+F ( ω ) et dωφF(ω ) F(\omega)Inverse Fourier transform of F ( ω ) .

3. Unit impulse function and unit step function

Unit impulse function : δ ( t ) = { + ∞ , t = 0 0 , t ≠ 0 \delta(t)=\begin{cases} +\infty,&t=0\\ 0,&t\ne 0 \end{ cases}d ( t )={ +,0,t=0t=0This is an imprecise statement, and a rigorous statement requires the use of weak limits. This function satisfies ∫ − ∞ + ∞ δ ( t ) dt = 1 \int_{-\infty}^{+\infty}\delta(t)\mathrm{d}t=1+δ(t)dt=1 Iff ( t ) f(t)f ( t ) is an infinitely differentiable function, then there is ∫ − ∞ + ∞ δ ( t ) f ( t ) dt = f ( 0 ) \int_{-\infty}^{+\infty}\delta(t )f(t)\mathrm{d}t=f(0)+δ(t)f(t)dt=f(0) δ ( t ) \delta(t) δ ( t ) is an even function, satisfyingδ ( at ) = 1 ∣ a ∣ δ ( t ) \delta(at)=\frac{1}{|a|}\delta(t)δ(at)=a1δ ( t )a ≠ 0 a\not 0a=0),且 ∫ − ∞ + ∞ δ ( n ) ( t − t 0 ) f ( t ) d t = ( − 1 ) n f ( n ) ( t 0 ) \int_{-\infty}^{+\infty}\delta^{(n)}(t-t_0)f(t)\mathrm{d}t={(-1)}^n f^{(n)}(t_0) +d(n)(tt0)f(t)dt=(1)nf(n)(t0) (this is proved by integration by parts). In particular,∫ − ∞ + ∞ δ ′ ( t ) f ( t ) dt = − f ′ ( 0 ) \int_{-\infty}^{+\infty}\delta'(t)f(t)\mathrm {d}t=-f'(0)+d(t)f(t)dt=f(0)

Unit step function : u ( t ) = { 1 , t > 0 0 , t < 0 u(t)=\begin{cases} 1,&t>0\\ 0,&t<0 \end{cases}u(t)={ 1,0,t>0t<0成动∫ − ∞ t δ ( τ ) d τ = u ( t ) ddtu ( t ) = δ ( t ) \int_{-\infty}^t\delta(\tau)\mathrm{d}\tau=u( t)\\ \frac{\mathrm{d}}{\mathrm{d}t}u(t)=\delta(t)td ( t ) d t=u(t)dtdu(t)=d ( t )

4. Laplace transform

Laplace transform : Let the function f ( t ) f(t)f(t) t ≥ 0 t\ge 0 t0 is defined, and the integral∫ 0 + ∞ f ( t ) e − stdt \int_0^{+\infty}f(t)e^{-st}\mathrm{d}t0+f(t)es t dtin the complex planessConvergence in a certain area of ​​s , then it is called F ( s ) = L [ f ( t ) ] = ∫ 0 + ∞ f ( t ) e − stdt F(s)=\mathscr{L}[f(t)] =\int_0^{+\infty}f(t)e^{-st}\mathrm{d}tF(s)=L[f(t)]=0+f(t)es t dtisf ( t ) f(t)The Laplace transform (or image function) of f ( t ) is called f ( t ) f(t)f ( t ) isF ( s ) F(s)The inverse Laplace transform of F ( s ) (or called the original function), recorded as f ( t ) = L − 1 [ F ( s ) ] f(t)=\mathscr{L}^{-1 }[F(s)]f(t)=L1 [F(s)]young ages = β + i ω s=\beta+i\omegas=b+,则 L [ f ( t ) ] = F [ f ( t ) u ( t ) e − β t ] \mathscr{L}[f(t)]=\mathscr{F}[f(t)u(t)e^{-\beta t}] L[f(t)]=F[f(t)u(t)eβt ]. This is the relationship between Laplace transform and Fourier transform.

The existence theorem of Laplace transform If the function f ( t ) f(t)f ( t ) satisfies the following conditions:
(1) Att ≥ 0 t\ge 0t0 continuous or piecewise continuous on any finite interval;
(2) Whent → + ∞ t\to+\inftyt+ ,f ( t ) f(t)The growth rate of f ( t ) does not exceed a certain exponential function, that is, there existsM > 0 M>0M>0 c ≥ 0 c\ge 0 c0使得 ∣ f ( t ) ∣ ≤ M e c t , ∀ t ∈ [ 0 , + ∞ ) |f(t)|\le Me^{ct},\forall t\in[0,+\infty) f(t)Mect,t[0,+ ) thenf ( t ) f(t)Laplace transform of f ( t ) F ( s ) = ∫ 0 + ∞ f ( t ) e − stdt F(s)=\int_0^{+\infty}f(t)e^{-st}\ mathrm{d}tF(s)=0+f(t)es t dtin the semi-planeRe ⁡ ( s ) > c \operatorname{Re}(s)>cRe(s)>There must exist on c , and the integral on the right is atRe ⁡ ( s ) ≥ c 1 > c \operatorname{Re}(s)\ge c_1>cRe(s)c1>Absolutely convergent and uniformly convergent on c , and in Re ⁡ ( s ) > c \operatorname{Re}(s)>cRe(s)>In the half-plane of c ,F ( s ) F(s)F ( s ) is an analytic function. ccc is calledf ( t ) f(t)The growth exponent of f ( t ) .

2. Fourier transform and Laplace transform of common functions

Like primitive function f ( t ) f(t)f(t) Fourier transform Laplace transform
1 1 1 2 π δ ( ω ) 2\pi\delta(\omega)2 p d ( o ) -
δ ( t ) \delta(t) d ( t ) 1 11 1 11
u ( t ) u(t) u(t) 1 i ω + π δ ( ω ) \cfrac{1}{i\omega}+\pi\delta(\omega)1+p d ( o ) 1 s \cfrac{1}{s} s1
t n t^n tn 2 π in δ ( n ) ( ω ) 2\pi i^n\delta^{(n)}(\omega)2πin d( n ) (o) Γ ( n + 1 ) s ( n + 1 ) ( n > − 1 ) \cfrac{\Gamma(n+1)}{s^{(n+1)}}(n>-1) s(n+1)C ( n+1)(n>1 ) (whennnWhen n is an integer, it is n ! sn + 1 \cfrac{n!}{s^{n+1}}sn+1n!
cos ⁡ ω 0 t \cos\omega_0 tcosoh0t π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] \pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]p [ d ( o+oh0)+d ( ooh0)] ss 2 + ω 0 2 \cfrac{s}{s^2+\omega_0^2}s2+oh02s(requirementsω 0 ∈ R \omega_0\in\mathbb{R}oh0R
sin ⁡ ω 0 t \sin\omega_0 tsinoh0t i π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] i\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)][ d ( o+oh0)d ( ooh0)] ω 0 s 2 + ω 0 2 \cfrac{\omega _0}{s^2+\omega _0^2}s2+oh02oh0(requirementsω 0 ∈ R \omega_0\in\mathbb{R}oh0R
e − β t u ( t ) e^{-\beta t}u(t) eβtu(t) 1 β + i ω ( β > 0 ) \cfrac{1}{\beta+i\omega}(\beta>0)b+1( b>0) 1 s + β \cfrac{1}{s+\beta} s+b1

3. Properties of Fourier transform and Laplace transform

F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr{F}[f(t)] F ( ω )=F[f(t)] F ( s ) = L [ f ( t ) ] F(s)=\mathscr{L}[f(t)] F(s)=L[f(t)]

nature Fourier transform Laplace transform
linear properties F [ a f 1 ( t ) + b f 2 ( t ) ] = a F [ f 1 ( t ) ] + b F [ f 2 ( t ) ] \mathscr{F}[af_1(t)+bf_2(t)]=a\mathscr{F}[f_1(t)]+b\mathscr{F}[f_2(t)] F [ a f1(t)+bf2(t)]=a F [ f1(t)]+bF[f2(t)] L [ a f 1 ( t ) + b f 2 ( t ) ] = a L [ f 1 ( t ) ] + b L [ f 2 ( t ) ] \mathscr{L}[af_1(t)+bf_2(t)]=a\mathscr{L}[f_1(t)]+b\mathscr{L}[f_2(t)] L [ a f1(t)+bf2(t)]=a L [ f1(t)]+b L [ f2(t)]
Similarity F [ f ( a t ) ] = 1 ∣ a ∣ F ( ω a ) \mathscr{F}[f(at)]=\frac{1}{|a|}F\left(\frac{\omega}{a}\right) F[f(at)]=a1F(aoh) L [ f ( a t ) ] = 1 a F ( s a ) \mathscr{L}[f(at)]=\frac{1}{a}F\left(\frac{s}{a}\right) L[f(at)]=a1F(as) a > 0 a>0 a>0
Symmetric properties F [ F ( ω ) ] = 2 π f ( − t ) \mathscr{F}[F(\omega)]=2\pi f(-t) F [ F ( ω )]=2πf(t)
Differential properties F [ f ′ ( t ) ] = i ω F [ f ( t ) ] \mathscr{F}[f'(t)]=i\omega\mathscr{F}[f(t)] F[f(t)]=F[f(t)]
F [ f ( n ) ( t ) ] = ( i ω ) n F [ f ( t ) ] \mathscr{F}[f^{(n)}(t)]={(i\omega)}^n\mathscr{F}[f(t)] F[f(n)(t)]=( )nF[f(t)]
L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) \mathscr{L}[f'(t)]=sF(s)-f(0) L[f(t)]=sF(s)f(0)
L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) \mathscr{L}[f^{(n)}(t)]=s^n F(s)-s^{n-1}f(0)-\cdots-f^{(n-1)}(0) L[f(n)(t)]=snF (s)_sn1f(0)f(n1)(0)
象函数的微分性质 F [ t f ( t ) ] = i F ′ ( ω ) \mathscr{F}[tf(t)]=iF'(\omega) F[tf(t)]=iF(ω)
F [ t n f ( t ) ] = i n F ( n ) ( ω ) \mathscr{F}[t^n f(t)]=i^n F^{(n)}(\omega) F[tnf(t)]=inF(n)(ω)
L [ t f ( t ) ] = − F ′ ( s ) \mathscr{L}[tf(t)]=-F'(s) L[tf(t)]=F(s)
L [ t n f ( t ) ] = ( − 1 ) n F ( n ) ( s ) \mathscr{L}[t^n f(t)]={(-1)}^n F^{(n)}(s) L[tnf(t)]=(1)nF(n)(s)
位移性质 F [ f ( t + t 0 ) ] = e i ω t 0 F [ f ( t ) ] \mathscr{F}[f(t+t_0)]=e^{i\omega t_0}\mathscr{F}[f(t)] F[f(t+t0)]=et0F[f(t)] L [ f ( t + t 0 ) ] = e s t 0 L [ f ( t ) ] \mathscr{L}[f(t+t_0)]=e^{st_0}\mathscr{L}[f(t)] L[f(t+t0)]=est0L[f(t)](要求 t 0 < 0 t_0<0 t0<0
象函数的位移性质 F [ e i ω 0 t f ( t ) ] = F ( ω − ω 0 ) \mathscr{F}[e^{i\omega_0 t}f(t)]=F(\omega-\omega_0) F[eiω0tf(t)]=F(ωω0) L [ e a t f ( t ) ] = F ( s − a ) \mathscr{L}[e^{at}f(t)]=F(s-a) L[eatf(t)]=F(sa)(要求 Re ⁡ ( s − a ) > s 0 \operatorname{Re}(s-a)>s_0 Re(sa)>s0,其中 s 0 s_0 s0 f ( t ) f(t) f(t)的增长指数)
积分性质 F [ ∫ − ∞ t f ( τ ) d τ ] = 1 i ω F ( ω ) + π F ( 0 ) δ ( ω ) \mathscr{F}\left[\int_{-\infty}^t f(\tau)\mathrm{d}\tau\right]=\frac{1}{i\omega}F(\omega)+\pi F(0)\delta(\omega) F[tf(τ)dτ]=1F(ω)+πF(0)δ(ω) L [ ∫ 0 t f ( τ ) d τ ] = 1 s F ( s ) \mathscr{L}[\int_0^t f(\tau)\mathrm{d}\tau]=\frac{1}{s}F(s) L[0tf(τ)dτ]=s1F(s)
象函数的积分性质 L [ f ( t ) t ] = ∫ s ∞ F ( s ) d s \mathscr{L}\left[\frac{f(t)}{t}\right]=\int_s^\infty F(s)\mathrm{d}s L[tf(t)]=sF(s)ds
卷积定理 F [ f 1 ( t ) ∗ f 2 ( t ) ] = F [ f 1 ( t ) ] ⋅ F [ f 2 ( t ) ] \mathscr{F}[f_1(t)*f_2(t)]=\mathscr{F}[f_1(t)]\cdot\mathscr{F}[f_2(t)] F[f1(t)f2(t)]=F[f1(t)]F[f2(t)]
F [ f 1 ( t ) ⋅ f 2 ( t ) ] = 1 2 π F [ f 1 ( t ) ] ∗ F [ f 2 ( t ) ] \mathscr{F}[f_1(t)\cdot f_2(t)]=\frac{1}{2\pi}\mathscr{F}[f_1(t)]*\mathscr{F}[f_2(t)] F[f1(t)f2(t)]=2π1F[f1(t)]F[f2(t)]
L [ f 1 ( t ) ∗ f 2 ( t ) ] = L [ f 1 ( t ) ] ⋅ L [ f 2 ( t ) ] \mathscr{L}[f_1(t)*f_2(t)]=\mathscr{L}[f_1(t)]\cdot\mathscr{L}[f_2(t)] L[f1(t)f2(t)]=L[f1(t)]L[f2(t)]
乘积定理 F 1 ( ω ) = F [ f 1 ( t ) ] F_1(\omega)=\mathscr{F}[f_1(t)] F1(ω)=F[f1(t)] F 2 ( ω ) = F [ f 2 ( t ) ] F_2(\omega)=\mathscr{F}[f_2(t)] F2(ω)=F[f2(t)],则
∫ − ∞ + ∞ f 1 ( t ) ‾ f 2 ( t ) d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω ) d ω \int_{-\infty}^{+\infty}\overline{f_1(t)}f_2(t)\mathrm{d}t=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\overline{F_1(\omega)}F_2(\omega)\mathrm{d}\omega +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω
∫ − ∞ + ∞ f 1 ( t ) f 2 ( t ) ‾ d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) F 2 ( ω ) ‾ d ω \int_{-\infty}^{+\infty}f_1(t)\overline{f_2(t)}\mathrm{d}t=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F_1(\omega)\overline{F_2(\omega)}\mathrm{d}\omega +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω
能量积分 帕西瓦尔等式:
∫ − ∞ + ∞ [ f ( t ) ] 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω \int_{-\infty}^{+\infty}{[f(t)]}^2\mathrm{d}t=\frac{1}{2\pi}\int_{-\infty}^{+\infty}{|F(\omega)|}^2\mathrm{d}\omega +[f(t)]2dt=2π1+F(ω)2dω
初值定理 f ( 0 ) = lim ⁡ s → ∞ s F ( s ) f(0)=\lim\limits_{s\to\infty}sF(s) f(0)=slimsF(s)(若这个极限存在)
终值定理 lim ⁡ t → + ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim\limits_{t\to+\infty}f(t)=\lim\limits_{s\to 0}sF(s) t+limf(t)=s0limsF(s)
(要求 s F ( s ) sF(s) sF(s)的所有奇点都在 s s s平面的左半部)

四、拉普拉斯逆变换

由于 F ( s ) = L [ f ( t ) ] = F [ f ( t ) u ( t ) e − β t ] F(s)=\mathscr{L}[f(t)]=\mathscr{F}[f(t)u(t)e^{-\beta t}] F(s)=L[f(t)]=F[f(t)u(t)eβt] s = β + i ω s=\beta+i\omega s=β+),我们有 1 2 π ∫ − ∞ + ∞ F ( β + i ω ) e i ω t d ω = f ( t ) u ( t ) e − β t f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( β + i ω ) e ( β + i ω ) t d ω \frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\beta+i\omega)e^{i\omega t}\mathrm{d}\omega=f(t)u(t)e^{-\beta t}\\ f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\beta+i\omega)e^{(\beta+i\omega)t}\mathrm{d}\omega 2π1+F(β+)etdω=f(t)u(t)eβtf(t)=2π1+F(β+)e(β+)tdω注意到 d s = i d ω \mathrm{d}s=i\mathrm{d}\omega ds=idω,我们把积分写出复变函数的积分: f ( t ) = 1 2 π i ∫ β − i ∞ β + i ∞ F ( s ) e s t d s f(t)=\frac{1}{2\pi i}\int_{\beta-i\infty}^{\beta+i\infty}F(s)e^{st}\mathrm{d}s f(t)=2πi1βiβ+iF(s)estds下面我们通过留数来计算这个积分。

定理 s 1 , s 2 , ⋯   , s l s_1,s_2,\cdots,s_l s1,s2,,sl F ( s ) F(s) F(s)的所有孤立奇点(有限个),除这些点外, F ( s ) F(s) F(s)处处解析。且存在 R 0 > 0 R_0>0 R0>0,使得当 ∣ s ∣ > R 0 |s|>R_0 s>R0时, ∣ F ( s ) ∣ ≤ M ( r ) |F(s)|\le M(r) F(s)M(r),其中 M ( r ) M(r) M(r) r r r的实函数,满足 lim ⁡ r → + ∞ M ( r ) = 0 \lim\limits_{r\to+\infty}M(r)=0 r+limM(r)=0(即当 s → ∞ s\to\infty s时, F ( s ) → 0 F(s)\to 0 F(s)0。选取 β \beta β,使所有孤立奇点的实部都小于 β \beta β,则当 t > 0 t>0 t>0时, f ( t ) = 1 2 π i ∫ β − i ∞ β + i ∞ F ( s ) e s t d s = ∑ k = 1 l Res ⁡ [ F ( s ) e s t , s k ] f(t)=\frac{1}{2\pi i}\int_{\beta-i\infty}^{\beta+i\infty}F(s)e^{st}\mathrm{d}s=\sum\limits_{k=1}^l \operatorname{Res}[F(s)e^{st},s_k] f(t)=2πi1βiβ+iF(s)estds=k=1lRes[F(s)est,sk]
定理的证明

Guess you like

Origin blog.csdn.net/qaqwqaqwq/article/details/131064865
Recommended