Matrix Analysis and Application(20)

Learning source: "Matrix Analysis and Application" Zhang Xianda Tsinghua University Press


singular value decomposition

1. The relationship between matrix singular value and matrix

        The singular value of a matrix is ​​closely related to the norm, determinant, condition number, and eigenvalue of the matrix.

1. The relationship between singular value and norm

A The spectral norm of          the matrix  is ​​equal to A the largest singular value of

\left \| A \right \|_{spec}=\sigma_1

According to the singular value decomposition theorem of the matrix, since  A the Frobenius norm of  the matrix \left \| A \right \|_F is ​​unitary invariant, that is

\left \| U^HAV \right \|_F=\left \| A \right \|_F

Therefore, there are

\left \| A \right \|_F=\left [ \sum_{i=1}^{m}\sum_{j=1}^{n}\left | a_{ij} \right |^2 \right ]^{\frac{1}{2}}

=\left \| U^HAV \right \|_F-\left \| \Sigma \right \|_F

=\sqrt{\sigma_1^2+\sigma_2^2+\cdots +\sigma_r^2}

That is, the Frobenius norm of any matrix is ​​equal to the positive square root of the sum of the squares of all nonzero singular values ​​of that matrix.

2. The relationship between singular value and determinant

        Let  A be  n\times n a square matrix. Since the absolute value of the determinant of the unitary matrix is ​​1, there is

\left | det(A) \right |=\left | det\Sigma \right |=\sigma_1\sigma_2\cdots \sigma_n

When all  \sigma_i is non-zero, it  A is non-singular; when existence  \sigma_i is zero, it  A is singular.

        For a  n\times n matrix  A , the following inequalities hold:

\left\{\begin{matrix} n\sigma_1\geqslant \left \| A \right \|_F \geqslant \sigma_1\\ \sigma_1^n\geqslant \sigma_1^{n-1}\sigma_n\geqslant \left | det(A) \right |\geqslant \sigma_n^n\\ \left \| A \right \|_F\geqslant \sigma_1\geqslant \left | det(A) \right |^{\frac{1}{n}}\\ \left | det(A) \right |^{\frac{1}{n}}\geqslant \sigma_n\geqslant \frac{\left | det(A) \right |}{\left \| A \right \|_F^{n-1}}\\ \frac{\left \| A \right \|_F^n}{\left | det(A) \right |}\geqslant \frac{\sigma_1}{\sigma_n}\geqslant max\left \{ 1,\frac{1}{n}\frac{\left \| A \right \|_F}{\left | det(A) \right |^{\frac{1}{n}}} \right \} \end{matrix}\right.

3. The relationship between singular value and condition number

        For a  m\times n matrix  A , its condition number can be defined as

cond(A)=\frac{\sigma_1}{\sigma_p},\qquad p=min\left \{ m,n \right \}]

Because \sigma_1 \geqslant \sigma_p , the condition number is a positive number greater than or equal to 1. For a singular matrix, since there is at least one singular value  \sigma_p=0 , the condition number of the singular matrix is ​​infinite; when  Athe condition number of a matrix is ​​not infinite but very large, the matrix  A is ​​said to be close to singular. It means that when A the condition number of the matrix is ​​large,  A the linear dependence of the row vector or column vector of the matrix is ​​strong.

        For the equation  Ax=b , A^HA the singular value decomposition of

A^HA=V\Sigma^2V^H

A^HA That is, the largest and smallest singular values ​​of  the matrix  are A the squares of the largest and smallest singular values ​​of the matrix, respectively, so

cond(A^HA)=\frac{\sigma_1^2}{\sigma_n^2}=\left [ cond(A) \right ]^2

That is,  A^HA the condition number of the matrix is  A ​​the square of the condition number of the matrix.

4. The relationship between singular value and eigenvalue

        Let   the eigenvalues   ​​and singular values ​​of n\times n the square symmetric matrix   be A\lambda_1,\lambda_2,\cdots ,\lambda_n(\left | \lambda_1 \right | \geqslant \left | \lambda_2 \right | \geqslant \cdots \geqslant \left | \lambda_n \right |)\sigma_1,\sigma_2,\cdots ,\sigma_n(\sigma_1\geqslant \sigma_2\geqslant \cdots \geqslant \sigma_n\geqslant 0)

\sigma_1\geqslant \left | \lambda_i \right |\geqslant \sigma_n(i=1,2,\cdots ,n),\quad cond(A)\geqslant \frac{\left | \lambda_1 \right |}{\left | \lambda_n \right |}

2. Summary of properties of singular values

1. The equation relationship that singular values ​​obey

1) A matrix  A_{m\times n} and its complex conjugate transpose  A^H have the same singular values.

2)  A_{m\times n} The nonzero singular values ​​of the matrix are   the positive square roots of the nonzero eigenvalues ​​of AA^H or  .A^HA

3) \sigma> 0 is  A_{m\times n} a single singular value of matrix-matrix if and only if  \sigma^2 it is   a single eigenvalue of AA^H or  .A^HA

4) If  p=min\left \{ m,n \right \} and  \sigma_1,\sigma_2,\cdots ,\sigma_p is  A_{m\times n} a singular value of the matrix, then

tr(A^HA)=\sum_{i=1}^{p}\sigma_i^2

5) The absolute value of the matrix determinant is equal to the product of the singular values ​​of the matrix, namely

\left | det(A) \right |=\sigma_1\sigma_2\cdots \sigma_n

6)  A The spectral norm of the matrix is ​​equal to  A the largest singular value of , ie  \left \| A \right \|_{spec}=\sigma_{max} .

7) If m\geqslant n, then for the matrix  A_{m\times n}, there is

\sigma_{min}(A)=min\left \{ \left \(\frac{x^HA^HAx}{x^Hx}\right \)^{\frac{1}{2}}:x\neq 0 \right \}

=min\left \{ \left \(x^HA^HAx \right \)^{\frac{1}{2}} :x^Hx=1,x\in C^n\right \}

8) If  m\geqslant n, then for the matrix  A_{m\times n}, there is

\sigma_{max}(A)=max\left \{ \left \(\frac{x^HA^HAx}{x^Hx}\right \)^{\frac{1}{2}}:x\neq 0 \right \}

=max\left \{ \left \(x^HA^HAx \right \)^{\frac{1}{2}} :x^Hx=1,x\in C^n\right \}

9) If  m\times mthe matrix  Ais ​​non-singular, then

\frac{1}{\sigma_{min}(A)}=max\left \{ \left ( \frac{x^H(A^{-1})^HA^{-1}x}{x^Hx} \right )^{\frac{1}{2}}:x\neq 0,x\in C^n \right \}

10) A=U\begin{bmatrix} \Sigma_1 &O \\ O& O \end{bmatrix}V^HIf  the singular value decomposition of  m\times nthe matrix  , then the Moose-Penrose inverse matrixAA

A^\dagger=V\begin{bmatrix} \Sigma_1^{-1} &O \\ O& O \end{bmatrix}U^H

11) \sigma_1,\sigma_2,\cdots ,\sigma_pIf  m\times nthe matrix  Ahas non-zero singular values ​​(where,  p=min\left \{ m,n \right \} ), then the matrix  \begin{bmatrix} O & A\\ A^H& O \end{bmatrix}has  2pnon-zero singular values  \sigma_1,\cdots ,\sigma_p,-\sigma_1,\cdots ,-\sigma_p​​and  \left | m-n \right |zero singular values.

2. Inequality relation of singular value

1) If  Athe sum  Bis  m\times na matrix, then for  1\leqslant i,j\leqslant p,i+j\leqslant p+1(p=min\left \{ m,n \right \}), have

\sigma_{i+j-1}(A+B)\leqslant \sigma_i(A)+\sigma_j(B)

In particular, j=1at the time  , \sigma_i(A+B)\leqslant \sigma_i(A)+\sigma_i(B),i=1,2,\cdots ,pestablished.

2) For the matrix  A_{m\times n},B_{m\times n} , there is

\sigma_{max}(A+B)\leqslant \sigma_{max}(A)+\sigma_{max}(B)

3) If  A the sum  Bis  m\times n a matrix, then

\sum_{j=1}^{p}\left [ \sigma_j(A+B)-\sigma_j(A) \right ]^2 \leqslant \sigma_{max}(A)+\sigma_{max}(B)

4) If  A_{m\times n}=[a_1,a_2,\cdots ,a_m] the singular value of  \sigma_1(A)\geqslant \sigma_2(A)\geqslant \cdots \geqslant \sigma_m(A) , then

\sum_{j=1}^{k}[\sigma_{m-k+j}(A)]^2\leqslant \sum_{j=1}^{k}a_j^Ha_j\leqslant \sum_{j=1}^{k}[\sigma_j(A)]^2,\quad k=1,2,\cdots ,m

5) If  p=min\left \{ m,n \right \} ,  and  the singular values ​​of and are arranged as  A_{m\times n} ,   and  ,   thenB_{m\times n}\sigma_1(A)\geqslant \sigma_2(A)\geqslant \cdots \geqslant \sigma_p(A)\sigma_1(B)\geqslant \sigma_2(B)\geqslant \cdots \geqslant \sigma_p(B)\sigma_1(A+B)\geqslant \sigma_2(A+B)\geqslant \cdots \geqslant \sigma_p(A+B)

\sigma_{i+j-1}(AB^H)\leqslant \sigma_i(A)\sigma_j(B),\quad 1\leqslant i,j\leqslant p,\quad i+j\leqslant p+1

6) Suppose  m\times (n-1) the matrix  is  ​​a matrix obtained by B removing any column of m\times n the matrix  , and their singular values ​​are arranged in non-descending order, thenA

\sigma_1(A)\geqslant \sigma_1(B)\geqslant \sigma_2(A)\geqslant \sigma_2(B)\geqslant \cdots \geqslant \sigma_h(A)\geqslant \sigma_h(B)\geqslant 0

In the formula,  h=min\left \{ m,n-1 \right \} .

7) Suppose  (m-1)\times n the matrix  B is ​​a matrix obtained by removing  any row of m\times n the matrix  A , and their singular values ​​are arranged in non-descending order, then

\sigma_1(A)\geqslant \sigma_1(B)\geqslant \sigma_2(A)\geqslant \sigma_2(B)\geqslant \cdots \geqslant \sigma_h(A)\geqslant \sigma_h(B)\geqslant 0

In the formula,  h=min\left \{ m,n-1 \right \} .

8)  A_{m\times n} The largest singular value of the matrix satisfies the inequality

\sigma_{max }(A)\geqslant \left [ \frac{1}{n}tr(A^HA) \right ]^{\frac{1}{2}}

Guess you like

Origin blog.csdn.net/qq_40206924/article/details/126182157